Cell and Tissue Biology

, Volume 9, Issue 1, pp 24–29 | Cite as

Rat heart structural and functional characteristics and gas exchange parameters after experimental myocardial infarction

  • E. V. Baidyuk
  • G. A. Sakuta
  • L. P. Kislyakova
  • Yu. Ya. Kislyakov
  • S. V. Okovityi
  • B. N. Kudryavtsev
Article

Abstract

Structural and functional changes in the heart and the parameters of gas exchange in rats were analyzed 6 months after initiation of myocardial infarction. With the aid of echocardiography, an increase was revealed of the terminal systolic and terminal diastolic sizes of the left heart ventricle in rats with chronic heart failure as compared with control by 78 and 30%, respectively. The volumes of the left ventricle in the systole and diastole were even greater—by five and two times, respectively. Dilation of the left ventricle cavity was accompanied by a thinning of the interventricular septum. As a result of structural changes of the left ventricle, its ability to function was significantly degraded. The shortening fraction in chronic heart failure decreased by 60%, while the output fraction decreased by 52%, compared with the corresponding parameters in control rats. Measurement of gas exchange showed that oxygen consumption in rats with chronic heart failure increased by almost 30%, while production of carbon dioxide by more than 40%. The respiration coefficient in rats with chronic heart failure amounted to 0.85, which indicates a significant increase of contribution of carbohydrates as energy substrates in metabolism of myocardium.

Keywords

myocardial infarction chronic heart failure echocardiography respiratory coefficient 

Abbreviations

MI

myocardial infarction

TDS

terminal diastolic size of LV

TSS

terminal systolic size of LV

LV

left ventricle

LA

left atrium

IVS

interventricular septum

CO

cardiac output

SV

systolic volume

EF

ejection fraction

SF

shortening fraction

CHF

chronic heart failure

HR

heart contraction rate

EchoCG

echocardiographic study

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Latif, A., Bolli, R., Tleyjeh, I., Montori, V., Perin, E., Hornung, C., Zuba-Surma, E., Al-Mallah, M., and Dawn, B., Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis, Arch. Intern. Med., 2007, vol. 167, pp. 989–997.CrossRefPubMedGoogle Scholar
  2. Alvarez, A.M. and Mukherjee, D., Liver abnormalities in cardiac diseases and heart failure, Int. J. Angiol., 2011, vol. 20, pp. 135–142.CrossRefPubMedCentralPubMedGoogle Scholar
  3. Baydyuk, E.V., Korshak, O.V., Karpov, A.A., Kudryavtsev, B.N., and Sakuta, G.A., Cell mechanisms of rat’s liver regeneration after experimental myocardial infarction, Tsitologiia, 2012, vol. 54, no. 12, pp. 873–882.Google Scholar
  4. Berger, J.S., Sanborn, T.A., Sherman, W., and Brown, D.L., Effect of chronic obstructive pulmonary disease on survival of patients with coronary heart disease having percutaneous coronary intervention, Am. J. Cardiol., 2004, vol. 94, pp. 649–651.CrossRefPubMedGoogle Scholar
  5. Bilsen, M., Nieuwenhoven, F.A., and Vusse, G.J., Metabolic remodelling of the failing heart: beneficial or detrimental?, Cardiovasc. Res., 2009, vol. 81, pp. 420–428.CrossRefPubMedGoogle Scholar
  6. Buja, L.M. and Vela, D., Cardiomyocyte death and renewal in the normal and diseased heart, Cardiovasc. Pathol., 2008, vol. 17, pp. 349–374.CrossRefPubMedGoogle Scholar
  7. Damman, K., Navis, G., Voors, A.A., Asselbergs, F.W., Smilde, T.D., Cleland, J.G., van Veldhuisen, D.J., and Hillege, H.L., Worsening renal function and prognosis in heart failure: systematic review and meta-analysis, J. Card. Fail., 2007, vol. 13, pp. 599–608.CrossRefPubMedGoogle Scholar
  8. Drexler, H., Depenbusch, J.W., Truog, A.G., Zelis, R., and Flaim, S.F., Effects of diltiazem on cardiac function and regional blood flow at rest and during exercise in a conscious rat preparation of chronic heart failure (myocardial infarction), Circulation, 1985, vol. 71, pp. 1262–1270.CrossRefPubMedGoogle Scholar
  9. Felker, G.M., Allen, L.A., Pocock, S.J., Shaw, L.K., and McMurray, J.J., Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM program and the Duke Databank, J. Am. Coll. Cardiol., 2007, vol. 50, pp. 40–47.CrossRefPubMedGoogle Scholar
  10. Fishbein, C., Maclean, D., and Maroko, P.R., Experimental myocardial infarction in the rat. Qualitative and quantitative changes during pathologic evolution, Am. J. Pathol., 1978, vol. 90, pp. 57–70.PubMedCentralPubMedGoogle Scholar
  11. Friedman, G.D., Klatsky, A.L., and Siegelaub, A.B., Lung function and risk of myocardial infarction and sudden cardiac death, New England J. Med., 1976, vol. 294, pp. 1071–1075.CrossRefGoogle Scholar
  12. Gaasch, W.H. and Zile, M.R., Left ventricular structural remodeling in health and disease with special emphasis on volume, mass, and geometry, J. Am. College Cardiol., 2011, vol. 58, pp. 1733–1740.CrossRefGoogle Scholar
  13. Geyer, H., Caracciolo, G., Abe, H., Wilansky, S., Carerj, S., Gentile, F., Nesser, H.J., Khandheria, B., Narula, J., and Sengupta, P.P., Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications, J. Am. Soc. Echocardiogr., 2010, vol. 23, pp. 351–369.CrossRefPubMedGoogle Scholar
  14. Gopal, A.S., Shen, Z., Sapin, P.M., Keller, A.M., Schnellbaecher, M.J., Leibowitz, D.W., Akinboboye, O.O., Rodney, R.A., Blood, D.K., and King, D.L., Assessment of cardiac function by three-dimensional echocardiography compared with conventional noninvasive methods, Circulation, 1995, vol. 92, pp. 842–853.CrossRefPubMedGoogle Scholar
  15. Hacker, T.A., McKiernan, S.H., Douglas, P.S., Wanagat, J., and Aiken, J.M., Age-related changes in cardiac structure and function in Fischer 344 × brown norway hybrid rats, Am. J. Physiol. Heart Circ. Physiol., 2006, vol. 290, pp. 304–311.CrossRefGoogle Scholar
  16. Ingwall, J.S. and Shen, W., The chemistry of ATP in the failing heart, Fundam. Heart Failure Rev., 1999, vol. 4, pp. 221–228.CrossRefGoogle Scholar
  17. Kharchenko, V.I., Mortality from major diseases of the circulatory system in Russia, Ross. Kardiol. Zh., 2005, vol. 1, pp. 5–15.Google Scholar
  18. Kruglyakov, P.V., Sokolova, I.B., Amineva, J.C., Nekrasova, N.N., Viyde, S.V., Cherednichenko, N.N., Zaritsky, A.Yu., Semernin, E.N., Kislyakova, T.V., and Polyntsev, D.G., Therapy of experimental myocardial infarction in rats using syngeneic transplantation of mesenchymal stem cells, Tsitologiia, 2004, vol. 46, no. 12, pp. 1043–1054.Google Scholar
  19. Lang, G.F., Bolezni sistemy krovoobrascheniya (Diseases of the Circulatory System), 2nd ed., Leningrad: Medgiz, 1958.Google Scholar
  20. Mareev, V.Y., Agueyev, F.T., Arutyunov, G.P., Koroteev, A.V., Mareev, Yu.V., and Ovchinnikov, A.G., Zh. Serd. Nedostat., 2013, vol. 14, no. 81, pp. 1–94.Google Scholar
  21. Maslova, M.N., Kislyakova, L.P., Kazennov, A.M., Kisliakof, Yu.Y., Katyuhin, L.N., Novozhylov, A.V., Skverchinskaya, E.A., and Tavrovskaya, T.V., Changes in gas exchange parameters and functional and biochemical properties of erythrocytes in the dynamics of experimental anemia in rats, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, no. 5, pp. 498–504.PubMedGoogle Scholar
  22. Nechesova, T.A., Korobko, I.Yu., and Kuznetsova, N.I., Left ventricular remodeling: pathogenesis and evaluation methods, Med. Novosti, 2008, vol. 11, pp. 7–13.Google Scholar
  23. Neubauer, S., The failing heart-an engine out of fuel, New England J. Med., 2007, vol. 356, pp. 1140–1151.CrossRefGoogle Scholar
  24. Okonko, D.O., Grzeslo, A., Witkowski, T., Mandal, A.K., and Slater, R.M., Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial, J. Am. Coll. Cardiol., 2008, vol. 51, pp. 103–112.CrossRefPubMedGoogle Scholar
  25. Rumyantsev, P.P., DNA synthesis and mitotic division of myocytes ventricular fibrillation and cardiac conduction system in the development of myocardial mammals, Tsitologiia, 1978, vol. 20, pp. 132–141.Google Scholar
  26. Saraste, A., Pulkki, K., Kallajoki, M., Heikkil, P., and Laine, P., Cardiomyocyte apoptosis and progression of heart failure to transplantation, Eur. J. Clin. Invest., 1999, vol. 29, pp. 380–388.CrossRefPubMedGoogle Scholar
  27. Sin, D.D., and Man, S.F., Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease, Circulation, 2003, vol. 107, pp. 1514–1519.CrossRefPubMedGoogle Scholar
  28. Stanley, W.C., Recchia, F.A., and Lopaschuk, G.D., Myocardial substrate metabolism in the normal and failing heart, Physiol. Rev., 2005, vol. 85, pp. 1093–1129.CrossRefPubMedGoogle Scholar
  29. Teichholz, L.E., Kreulen, T., Herman, M.V., and Gorlin, R., Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy, Am. J. Cardiol., 1976, vol. 37, pp. 7–11.CrossRefPubMedGoogle Scholar
  30. Urbanek, K., Cabral-da-Silva, M.C., Ide-Iwata, N., Maestroni, S., Delucchi, F., Zheng, H., Ferreira-Martins, J., Ogórek, B., D’Amario, D., Bauer, M., Zerbini, G., Rota, M., Hosoda, T., Liao, R., Anversa, P., Kajstura, J., and Leri, A., Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart, Circ. Res., 2010, vol. 107, pp. 429–441.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Baidyuk
    • 1
  • G. A. Sakuta
    • 1
  • L. P. Kislyakova
    • 2
  • Yu. Ya. Kislyakov
    • 2
  • S. V. Okovityi
    • 3
  • B. N. Kudryavtsev
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State University of Analytical InstrumentationSt. PetersburgRussia
  3. 3.Chemical Pharmaceutical AcademySt. PetersburgRussia

Personalised recommendations