Cell and Tissue Biology

, Volume 8, Issue 5, pp 374–383 | Cite as

The role of the MEK/ERK pathway in regulation of HDACI-induced senescence of transformed rat embryo fibroblasts

  • E. Yu. Kochetkova
  • T. V. Bykova
  • S. G. Zubova
  • T. V. Pospelova


A key regulator of cellular senescence, mTORC1 complex, is a target of many signaling cascades, including Ras/Raf/MEK/ERK cascade. In this paper, we investigated the role of the MEK/ERK branch of this cascade in the process of cellular senescence induced by sodium butyrate (NaBut), a histone deacetylase inhibitor (HDACI), in transformed rat-embryo fibroblasts. Suppression of MEK/ERK activity by inhibitor PD0325901 did not prevent activation of mTORC1 complex induced by NaBut treatment. Inhibition of MEK/ERK increased mTORC1 activity and activated mTORC2 complex. Activation of mTOR-containing complexes was accompanied by reorganization of the actin cytoskeleton (formation of actin stress fibers) and the appearance of cellular senescence markers. In contrast to NaBut-induced senescence, no protein accumulation was observed, probably due to increased activity of the degradation processes. Furthermore, senescence induction under suppression of MEK/ERK drastically decreased the cell viability, Thus, NaBut-induced senescence upon suppressed activity of the MEK/ERK branch of MAP kinase cascade has a more pronounced tumor-suppressing effect that is manifested by activation of both mTOR complexes, reorganization of the actin cytoskeleton and protein degradation.


inhibitor of histone deacetylases sodium butyrate senescence-associated β-galactosidase 



histone deacetylase inhibitor


sodium butyrate


senescence-associated β-galactosidase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bamburg, J.R., MucCough, A., and Ono, S., Putting a new twist on actin: ADF/cofilins modulate actin dynamics, Trends Cell Biol., 1999, vol. 9, pp. 364–370.PubMedCrossRefGoogle Scholar
  2. Benanti, J.A. and Galloway, D.A., The normal response to Ras. Senescence or transformation?, Cell Cycle, 2004, vol. 3, pp. 715–717.PubMedCrossRefGoogle Scholar
  3. Blagosklonny, M.V. and Hall, M.N., Growth and aging: a common molecular mechanism, Aging, 2009, vol. 1, pp. 357–362.PubMedPubMedCentralGoogle Scholar
  4. Botazzi, M.E., Zhu, X., Böhmer, R.M., and Assoian, R.K., Regulation of P21cip1 expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase, J. Cell Biol., 1999, vol. 146, pp. 1255–1264.CrossRefGoogle Scholar
  5. Bîs, J.L., Ras oncogenes in human cancer: a review, Cancer Res., 1989, vol. 49, pp. 4682–4689.Google Scholar
  6. Carriere, A., Romeo, Y., Acosta-Jaques, H.A., Moreau, J., Bonneil, E., Thibault, P., Fingar, D.C., and Roux, P.P., ERK1,2 phosphorylate raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1), J. Biol. Chem., 2011, vol. 286, pp. 567–577.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Demidenko, Z.N. and Blagosklonny, M.V., Growth stimulation leads to cellular senescence when the cell cycle is blocked, Cell Cycle, 2008, vol. 7, pp. 3355–3361.PubMedCrossRefGoogle Scholar
  8. Demidenko, Z.N., Zubova, S.G., Bukreeva, E.I., Pospelov, V.A., Pospelova, T.V., and Blagosklonny, M.V., Rapamycin decelerates cellular senescence, Cell Cycle, 2009, vol. 8, pp. 1888–1895.PubMedCrossRefGoogle Scholar
  9. Deschenez-Simard, X., Gamount-Leclerc, M.-F., Bourdeau, V., Lessard, F., Moiseeva, O., Forest, V., Igelmann, S., Mallette, F.A., Saba-El-Leil, M.K., Meloche, S., Saad, F., Mes-Masson, A.M., and Ferbeyre, G., Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation, Genes Dev., 2013, vol. 27, pp. 900–915.CrossRefGoogle Scholar
  10. Dimri, J.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M., and Campisi, J., A Biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Nat. Acad. Sci. USA., 1995, vol. 95, pp. 10541–10546.Google Scholar
  11. Guertin, D.A. and Sabatini, D.M., Defining the role of mTOR in cancer, Cancer Cell, 2007, vol. 12, pp. 9–20.PubMedCrossRefGoogle Scholar
  12. Guo, G.Y., Chen, H.-Y., Mathew, R., Fan. J., Strohecker, A.M., Karsli-Uzunbas, G., Kamphorst, J.J., Chen, G., Lemons, J.M.L., Karantza, V., Coller, H.A., DiPaola, R.S., Gelinas, S., Rabinowitz, J.D., and White, E., Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis, Genes Dev., 2010, vol. 25, pp. 460–470.CrossRefGoogle Scholar
  13. Hanahan, D., and Weinberg, R.A., The Hallmarks of Cancer, Cell, 2000, vol. 100, pp. 57–70.PubMedCrossRefGoogle Scholar
  14. Hanahan, D. and Weinberg, R.A., Hallmarks of cancer: the next generation, Cell, 2011, vol. 144, pp. 646–674.PubMedCrossRefGoogle Scholar
  15. Huang, J., Dibble, C.C., Matsuzaki, M., and Manning, B.D., The TSC1-TSC2 complex is required for proper activation of mTOR complex 2, Mol. Cell. Biol., 2008, vol. 28, pp. 4104–4115.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Regg, M.A., Hall, A., and Hall, M.N., Mammalian TOR complex 2 controls cytoskeleton and is rapamycin-insensitive, Nature Cell Biol., 2004, vol. 6, pp. 1122–1128.PubMedCrossRefGoogle Scholar
  17. Janes, M.R. and Fruman, D.A., Targeting TOR dependence in cancer, OncoTarget, 2010, vol. 1, pp. 69–76.PubMedPubMedCentralGoogle Scholar
  18. Kolesnichenko, M., Hong, L., Liao, R., Vogt, P.K., and Sun, P., Attenuation of TORC1 signaling delays replicative and oncogenic Ras-induced senescence, Cell Cycle, 2012, vol. 11, pp. 1–11.CrossRefGoogle Scholar
  19. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P., and Pandolfi, P.P., Phosphorylation and functional inactivation of TSC2 by ERK: implications for tuberosis sclerosis and cancer pathogenesis, Cell, 2005, vol. 121, pp. 179–193.PubMedCrossRefGoogle Scholar
  20. March, N.H. and Winton, D.J., mTOR Regulation by JNK: rescuing the starving intestinal cancer cell?, Gastroenterology, 2011, vol. 140, pp. 1387–1391.PubMedCrossRefGoogle Scholar
  21. Mendoza, M.C., Er, E.E., and Blens, J., The Ras-ERK and PI3K-mTOR pathways: cross-link and compensation, Trends Biochem. Sci., 2011, vol. 36, pp. 320–328.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Moreno-Lauseca, P. and Streuli, C.H., Signalling pathways linking integrins with cell cycle progression, Matrix Biol., 2013. doi: 10.1016/j.matbio.2013.10.011Google Scholar
  23. Pearson, G., Robinson, F., Beers, Gibson, T., Xu, B.E., Karandikar, M., Berman, K., and Cobb, M.N., Mitogenactivated protein (MAP) kinase pathways: regulation and physiological functions, Endocr. Rev., 2001, vol. 22, no. 2, pp. 153–183.PubMedGoogle Scholar
  24. Pospelova, T.V., Leontieva, O.V., Bykova, T.V., Zubova, S.G., Pospelov, V.A., and Blagosklonny, M.V., Supression of replicative senescence by rapamycin in rodent tumor cells, Cell Cycle, 2012, vol. 11, pp. 1–6.CrossRefGoogle Scholar
  25. Romanov, V.S., Abramova, M.V., Svetlikova, S.B., Bykova, T.V., Zubova, S.G., Aksenov, N.D., Fornace, A.J.Jr., Pospelova, T.V., and Pospelov, V.A., P21waf1 is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate, Cell Cycle, 2010, vol. 9, pp. 1–11.CrossRefGoogle Scholar
  26. Sarbassov, D.D., Ali, S.M., and Sabatini, D.M., Growing roles for the mTOR pathway, Current Opin. Cell Biol., 2005, vol. 17, pp. 596–603.CrossRefGoogle Scholar
  27. Santarpia, L., Lippman, S.L., and El-Naggar, A.K., Targeting the mitogen-activated protein kinase Ras-Raf signaling pathway in cancer therapy, Expert Opin. Ther. Targets, 2012, vol. 16, pp. 103–119.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Serrano, M., Lin, W.A., McCurrach, M.E., Beach, D., and Lowe, S.W., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and P16ink4a, Cell, 1997, vol. 88, pp. 593–602.PubMedCrossRefGoogle Scholar
  29. Shapiro, H.M., Practical Flow Cytometry, New York: Alan R. Liss, Inc., 1988.Google Scholar
  30. Shaw, R.J. and Cantley, L.C., Ras, PI(3)K and mTOR signaling controls tumor cell growth, Nature, 2006, vol. 441, pp. 424–430.PubMedCrossRefGoogle Scholar
  31. Takashima, A. and Faller, D.V., Targeting the ras oncogene, Expert Opin. Ther. Targets, 2013, vol. 17, pp. 507–531.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Toussaint, O., Dumont, P., Dierick, J.F., Pascal, T., Frippiat, C., Chainiaux, F., Sluse, F., Eliaers, F., and Remacle, J., Stress-induced premature senescence. essence of life, evolution, stress and aging, Ann. N. Y. Acad. Sci., 2000, vol. 908, pp. 85–98.PubMedCrossRefGoogle Scholar
  33. Walker, J.L. and Assoian, R.K., Integrin-dependent signal transduction regulating cyclin D1 expression and G1 phase cell cycle progression, Cancer Met. Rev., 2005, vol. 24, pp. 383–393.CrossRefGoogle Scholar
  34. Wilkinson, M.G. and Millar, J.B.A., Control of the eukaryotic cell cycle by MAP kinase signaling pathways, FASEB, 2000, vol. 5, pp. 2147–2157.CrossRefGoogle Scholar
  35. Wu, X.-N., Wang, X.-K., Wu, S.-Q., Lu, J., Zheng, M., Wang, Y.-H., Zhou, H., Zhang, H., and Han, J., Phosphorylation of raptor by p38 participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation, J. Biol. Chem., 2011, vol. 286, pp. 31501–31511.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Yamamoto, T., Taya, S., and Kaibuchi, K., Ras-induced transformation and signaling pathway, J. Biochem., 1999, vol. 126, pp. 799–803.PubMedCrossRefGoogle Scholar
  37. Zoncu, R., Sabatini, D.M., and Efeyan, A., MTOR: from growth signal integration to cancer, diabetes and aging, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, pp. 21–35.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Zubova, Yu.G., Bykova, T.V., Zubova, S.G., Abramova, M.V., Aksenov, N.D., Pospelov, V.A., and Pospelova, T.V., Induction of premature senescence program by an inhibitor of histone deacetylase sodium butyrate in normal and transformed rat fibroblasts, Tsitologiia, 2005, vol. 47, no. 12, pp. 1055–1062.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. Yu. Kochetkova
    • 1
    • 2
  • T. V. Bykova
    • 1
  • S. G. Zubova
    • 1
  • T. V. Pospelova
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations