Advertisement

Cell and Tissue Biology

, Volume 8, Issue 3, pp 267–275 | Cite as

Ultrastructural organization and composition of carotenoids of the eyespot in Chlamydomonas reinhardtii mutants

  • V. G. Ladygin
  • G. A. Semenova
Article

Abstract

Biogenesis of the ultrastructure of the eyespot in chloroplasts of unicellular green alga Chlamydomonas reinhardtii has been studied. It was established that development of the eyespot structure correlates with the accumulation of carotenoids. Due to their accumulation, the eyespot forms from one to four layers of lipid-carotenoid globules. It has been shown that, in eyespot globules, only carotenes are accumulated. It was found for the first time that, in mutants, the carotene composition in the eyespot may be changed due to changes of their composition in chloroplast membranes.

Keywords

Chlamydomonas reinhardtii mutants chloroplast eyespot ultrastructure carotenes xanthophylls 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckmann, M. and Hegemann, P., In vitro identification of rhodopsin in the green alga Chlamydomonas, Biochemistry, 1991, vol. 30, pp. 3692–3697.PubMedCrossRefGoogle Scholar
  2. Derguini, F., Mazur, P., Nakanishi, K., Starace, D.M., Saranak, J., and Foster, K.W., All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii, Photoehem. Photobiol., 1991, vol. 54, pp. 1017–1021.CrossRefGoogle Scholar
  3. Dieckmann, C.L., Eyespot placement and assembly in the green alga Chlamydomonas, BioEssays, 2003, vol. 25, pp. 410–416.PubMedCrossRefGoogle Scholar
  4. Foster, K.W. and Smyth, R.D., Light antennas in phototactic algae, Microbiol. Rev., 1980, vol. 44, pp. 572–630.PubMedCentralPubMedGoogle Scholar
  5. Foster, K.W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., and Nakanishi, K., A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas, Nature, 1984, vol. 311, pp. 756–759.PubMedCrossRefGoogle Scholar
  6. Grung, M., Kreimer, G., Calenberg, M., Melkonian, M., and Liaaen-Jensen, S., Carotenoids in the eyespot apparatus of the flagellate green alga Spermatozopsis similes: aAdaptation to the retinal-based photoreceptor, Planta, 1978, vol. 193, pp. 38–43.Google Scholar
  7. Hager, A., and Meyer-Bertenrath, T., Die isolierung und quantitative bestimmung der carotinoide und chlorophylle von beatten, algen and isolierten chloroplasten mit hilfe dunnschichtchromatographischer methoden, Planta, 1966, vol. 69, no. 3, pp. 198–217.PubMedCrossRefGoogle Scholar
  8. Harz, H. and Hegemann, P., Rhodopsin-regulated calcium currents in Chlamydomona, Nature, 1991, vol. 351, pp. 489–491.CrossRefGoogle Scholar
  9. Hegemann, P., Gfirtner, W., and Uhl, R., All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin, Biophys. J., 1991, vol. 60, pp. 1477–1489.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hegemann, P., Hegemann, U., and Foster, K.W., Reversible bleaching of Chlamydomonas reinhardtii rhodopsin in vivo, Photochem. Photobiol., 1988, vol. 48, pp. 123–128.PubMedCrossRefGoogle Scholar
  11. Inwood, W., Yoshihara, C., Zalpuri, R., Kim, K.-S., and Kustu, S., The ultrastructure of a Chlamydomonas reinhardtii mutant strain lacking phytoene synthase resembles that of a colorless alga, Mol. Plant., 2008, vol. 1, pp. 925–937.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Kreimer, G., Brohsonn, U., and Melkonian, M., Isolation and partial characterization of the photoreceptive organelle for phototaxis of a flagellate green alga, Eur. J. Cell Biol., 1991, vol. 55, pp. 318–327.PubMedGoogle Scholar
  13. Kreimer, G. and Melkonian, M., Reflection confocal laser scanning microscopy of eyespots in flagellated green algae, Eur. J. Cell Biol., 1990, vol. 53, pp. 101–111.PubMedGoogle Scholar
  14. Kreimer, G., Overlander, C., Sineschekov, O.A., Stolzis, H., Nultsch, W., and Melkonian, M., Functional analysis of the eyespot in Chlamydomonas reinhardtii mutant ey 627, mt(-), Planta, 1992, vol. 188, pp. 513–521.PubMedCrossRefGoogle Scholar
  15. Ladygin, V.G. and Shirshikova, G.N., Involvement of photosystem-I in light-induced conversion of violaxanthin to zeaxanthin, Physiol. Rast., 1987, vol. 34, no. 6, pp. 1068–1072.Google Scholar
  16. Ladygin, V.G., Collection of the mutant Chlamydomonas strains of the Institute of Soil Science and Photosynthesis, Pushchino, in Katalog kul’tur mikrovodoroslei v kollektsiyakh SSSR (Catalogue of Microalgal Cultures in the Collections of the USSR), Moscow: Izd. Ross. Akad. Nauk, 1991, pp. 152–173.Google Scholar
  17. Ladygin, V.G., Pigment mutations of Chlamydomonas reinhardtii induced by N-nitrosoethylurea and by UV-irradiation, Genetika, 1970, vol. 6, no. 3, pp. 127–131.Google Scholar
  18. Ladygin, V.G., Semenova, G.A., and Tageeva, S.V., Plastid lamellar structure development in the Chlamydomonas reinhardi pigment mutants, Tsitologiia, 1973, vol. 15, no. 7, pp. 810–819.PubMedGoogle Scholar
  19. Lawson, M.A. and Satir, P., Characterization of the eyespot regions of “Blind” Chlamydomonas mutants after restoration of photophobic responses, J. Eukaryotic Microbiol., 1995, vol. 41, pp. 593–601.CrossRefGoogle Scholar
  20. Melkonian, M. and Robenek, H., The eyespot apparatus of flagellated green algae: a critical review, Prog. Phycol. Res., 1984, vol. 3, pp. 193–268.Google Scholar
  21. Nultsch, W. and Hader, D.-P., Photomovement in motile microorganisms-II, Photochem. Photobiol., 1988, vol. 47, pp. 837–869.PubMedCrossRefGoogle Scholar
  22. Renninger, S., Backendorf, E., and Kreimer, G., Sub fractionation of eyespot apparatuses from the green alga Spermatozopsis similis: isolation and characterization of eyespot globules, Planta, 2001, vol. 213, pp. 51–63.PubMedCrossRefGoogle Scholar
  23. Riiffer, U., and Nultsch, W., Flagellar photoresponses of Chlamydomonas cells held on micropipettes. II. Change in flagellar beat pattern, Cell Motil. Cytoskeleton, 1991, vol. 18, pp. 269–278.CrossRefGoogle Scholar
  24. Semenova, G.A. and Ladygin, V.G., The ultrastructure of plastids of three mutant types of Chlamydomonas reinhardtii phenotypically yellow in the light or in the darkness, Tsitologiia, 1975, vol. 17, no. 9, pp. 1003–1008.PubMedGoogle Scholar
  25. Semenova, G.A., Ultrastructural organization of Chlamydomonas eyespot, Tsitologiia, 1978, vol. 20, no. 6, pp. 603–606.Google Scholar
  26. Sineshchekov, O.A., Govorunova, U.G., and Litvin, F.F., Role of photosynthetic apparatus and stigma in the formation of spectral sensitivity of phototaxis in flagellated green algae, Biofizika, 1989, vol. 34, no. 2, pp. 255–258.Google Scholar
  27. Takahashi, T., Yoshihara, K., Watanabe, M., Kubota, M., Johnson, R., Derguini, F., and Nakanishi, K., Photoisomerization of retinal at 13-ene is important for phototaxis of Chlamydomonas reinhardtii: simultaneous measurements of phototactic and photophobic responses, Biochem. Biophys. Res. Commun., 1991, vol. 178, pp. 1273–1279.PubMedCrossRefGoogle Scholar
  28. Wagner, V., Ulmann, K., Mollwo, A., Kaminski, M., Mittag, M., and Kreimer, G., Phosphoproteome of Chlamydomonas reinhardtii eyespot fraction includes key proteins of light signaling pathway, Plant Physiol., 2008, vol. 146, pp. 772–788.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow oblastRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations