Cell and Tissue Biology

, Volume 8, Issue 1, pp 61–67 | Cite as

Functional properties of smooth muscle cells in ascending aortic aneurysm

  • D. A. Kostina
  • I. V. Voronkina
  • L. V. Smagina
  • N. D. Gavriliuk
  • O. M. Moiseeva
  • O. B. Irtiuga
  • V. E. Uspensky
  • A. A. Kostareva
  • A. B. Malashicheva
Article
  • 102 Downloads

Abstract

Thoracic aortic aneurysm (TAA) develops as a result of complex sequential events that dynamically alter the structure and composition of the aortic vascular extracellular matrix (ECM). The main cellular elements that alter the composition of aortic wall are smooth muscle cells (SMCs). The purpose of the present work was to study alterations of smooth muscle cell functions derived from the patients with TAA and from healthy donors. Since it is believed that TAA associates with bicuspid aortic valve (BAV) and with tricuspid aortic valve (TAV) differed in their pathogenesis, we have compared SMCs and tissue samples from BAV and TAV patients and healthy donors. The comparison was done by several parameters: SMC growth, migration and apoptotic dynamics, metalloproteinase MMP2 and MMP9 activity (zymography), and elastin, collagen, and fibrillin content (Western blot) in both tissue samples and cultured SMCs. Proliferation of BAV and TAV SMCs was decreased and migration ability in scratch tests was increased in TAV-derived SMCs compared to donor cells. BAV-cells migration ability was not changed compared to donor SMCs. Elastin content was decreased in TAA SMCs, whereas the content of fibrillin and collagen was not altered. At the same time, the elastin and collagen protein level was significantly higher in tissue samples of TAA patients than in donorderived samples. SMC proliferation and migration is differently affected in TAV and BAV-associated TAA that supports the idea on different nature of these two TAA groups. Our data also show that SMC functional properties are altered in TAA patients and these alterations could play a significant role in the disease pathogenesis.

Keywords

extracellular matrix matrix metalloproteases smooth muscle cells thoracic aortic aneurysm 

Abbreviations

TAA

thoracic aortic aneurysm

AAA

abdominal aortic aneurysm

BAV

bicuspid aortic valve

ECM

extracellular matrix

SMC

smooth muscle cells

MMP

matrix metalloproteinase

TAV

tricuspid aortic valve

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blunder, S., Messner, B., Aschacher, T., Zeller, I., Türkcan, A., Wiedemann, D., Andreas, M., Blüschke, G., Laufer, G., Schachner, T., and Bernhard, D., Characteristics of TAV- and BAV-associated thoracic aortic aneurysms-smooth muscle cell biology, expression profiling, and histological analyses, Atherosclerosis, 2012, vol. 220, pp. 355–361.PubMedCrossRefGoogle Scholar
  2. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.PubMedCrossRefGoogle Scholar
  3. Della, Corte, A., Quarto, C., Bancone, C., Castaldo, C., Di, Meglio, F., Nurzynska, D., De, Santo, L.S., De, Feo, M., Scardone, M., Montagnani, S., and Cotrufo, M., Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling, J. Thorac. Cardiovasc. Surg., 2008, vol. 135, pp. 8–18.PubMedCrossRefGoogle Scholar
  4. El-Hamamsy, I. and Yacoub, M.H., Cellular and molecular mechanisms of thoracic aortic aneurysms, Nat. Rev. Cardiol., 2009, vol. 12, pp. 771–786.CrossRefGoogle Scholar
  5. Folkersen, L., Wågsäter, D., Paloschi, V., Jackson, V., Petrini, J., Kurtovic, S, Maleki, S., Eriksson, M.J., Caidahl, K., Hamsten, A., Michel, J.B., Liska, J., Gabrielsen, A., Franco-Cereceda, A., and Eriksson, P., Unraveling divergent gene expression profiles in bicuspid and tricuspid aortic valve patients with thoracic aortic dilatation: the ASAP study, Mol. Med., 2011, vol. 17, pp. 1365–1373.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Forte, A., Della, Corte, A., De, Feo, M., Cerasuolo, F., and Cipollaro, M., Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm, Cardiovasc. Res., 2010, vol. 88, pp. 395–405.PubMedCrossRefGoogle Scholar
  7. Ikonomidis, J.S., Jones, J.A., Barbour, J.R., Stroud, R.E., Clark, L.L., Kaplan, B.S., Zeeshan, A., Bavaria, J.E., Gorman, J.H., 3rd, Spinale, F.G., and Gorman, R.C., Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves, J. Thorac. Cardiovasc. Surg., 2007, vol. 133, pp. 1028–1036.PubMedCrossRefGoogle Scholar
  8. Irtyuga, O.B., Gavrilyuk, N.D., Voronkina, I.V., Uspenskii, V.E., Malashicheva, A.B., and Moiseeva, O.M., The mechanisms of formation of the ascending aorta aneurysm of various etiologies, Ros. Kardiol. Zh., 2013, vol. 99, pp. 14–18.Google Scholar
  9. Jones, J.A., Zavadzkas, J.A., Chang, E.I., Sheats, N., Koval, C., Stroud, R.E., Spinale, F.G., and Ikonomidis, J.S., Cellular phenotype transformation occurs during thoracic aortic aneurysm development, J. Thorac. Cardiovasc. Surg., 2010, vol. 140, pp. 653–659.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Kirschenlohr, H.L., Metcalfe, J.C., and Grainger, D.J., Cultures of proliferating vascular smooth muscle cells from adult human aorta, Human Cell Culture Protocols (Meth. Mol. Med.), 1996, vol. 24, pp. 319–334.CrossRefGoogle Scholar
  11. Kjellqvist, S., Maleki, S., Olsson, T., Chwastyniak, M., Branca, R.M., Lehti-Cereceda, A., and Eriksson, P., A combined proteomic and transcriptomic approach shows diverging molecular mechanisms in thoracic aortic aneurysm development in patients with tricuspid- and bicuspid aortic valve, Mol. Cell Proteomics, 2013, vol. 12, pp. 407–425.PubMedCrossRefGoogle Scholar
  12. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.PubMedCrossRefGoogle Scholar
  13. LeMaire, S.A., Wang, X., Wilks, J.A., Carter, S.A., Wen, S., Won, T., Leonardelli, D., Anand, G., Conklin, L.D., Wang, X.L., Thompson, R.W., and Coselli, J.S., Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves, Surg. Res., 2005, vol. 123, pp. 40–48.CrossRefGoogle Scholar
  14. Liao, M., Liu, Z., Bao, J., Zhao, Z., Hu, J., Feng, X., Feng, R., Lu, Q., Mei, Z., Liu, Y., Wu, Q., and Jing, Z.J., A proteomic study of the aortic media in human thoracic aortic dissection: implication for oxidative stress, Thorac. Cardiovasc. Surg., 2008, vol. 136, pp. 65–72.CrossRefGoogle Scholar
  15. Lindsay, M.E., and Dietz, H.C., Lessons on the pathogenesis of aneurysm from heritable conditions, Nature, 2011, vol. 7347, pp. 308–316.CrossRefGoogle Scholar
  16. Longo, G.M., Xiong, W., Greiner, T.C., Zhao, Y., Fiotti, N., and Baxter, B.T., Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms, J. Clin. Invest., 2002, vol. 110, pp. 625–632.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Malashicheva, A.B., Moiseeva, O.M., Uspenskii, V.E., Freilikhman, O.A., Kostina, D.A., Gavrilyuk, N.D., Khromova, N.V., Ponomareva, G.M., Starikov, A.S, Bernikova, O.G., and Kostareva, A.A., TGF-beta in the pathogenesis of the ascending part of the thoracic aorta, Byull. Feder. Tsentra Serdtsa, Krovi Endokrinol. im. V.A. Almazova, 2013 (in press).Google Scholar
  18. McCormick, M.L., Gavrila, D., and Weintraub, N.L., Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms, Arterioscler. Thromb Vasc. Biol., 2007, vol. 27, pp. 461–469.PubMedCrossRefGoogle Scholar
  19. Milewicz, D.M., Guo, D.C., Tran-Fadulu, V., Lafont, A.L., Papke, C.L., Inamoto, S., Kwartler, C.S., and Pannu, H., Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction, Annu. Rev. Genomics Hum. Genet., 2008, vol. 9, pp. 283–302.PubMedCrossRefGoogle Scholar
  20. Mohamed, S., Misfeld, M., Hanke, T., Charitos, S., Bullerdiek, J., Belge, G., Kuehnel, W., and Sievers, H., Inhibition of caspase-3 differentially affects vascular smooth muscle cell apoptosis in the concave versus convex aortic sites in ascending aneurysms with a bicuspid aortic valve, Ann. Anat., 2010, vol. 92, pp. 145–150.CrossRefGoogle Scholar
  21. Theruvath, T.P., Jones, J.A., and Ikonomidis, J.S., Matrix metalloproteinases and descending aortic aneurysms: parity, disparity, and switch, J. Card. Surg., 2012, vol. 27, pp. 81–90.PubMedCrossRefGoogle Scholar
  22. Voronkina, I.V., Kharisov, A.M., Blinova, M.I., Paramonov, B.A., Potokin, and Pinaev, G.P., The “air pouch” model in mice and a study of the wound fluid proteolytic activity, Tsitologiia, 2002, vol. 44, no. 3, pp. 270–276.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • D. A. Kostina
    • 1
  • I. V. Voronkina
    • 2
  • L. V. Smagina
    • 3
  • N. D. Gavriliuk
    • 1
  • O. M. Moiseeva
    • 1
  • O. B. Irtiuga
    • 1
  • V. E. Uspensky
    • 1
  • A. A. Kostareva
    • 1
  • A. B. Malashicheva
    • 1
  1. 1.Almazov Federal Heart, Blood, and Endocrinology CenterSt. PetersburgRussia
  2. 2.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations