Advertisement

Cell and Tissue Biology

, Volume 7, Issue 6, pp 512–521 | Cite as

Primary cell culture from pig neonatal thyroid gland: Growth, folliculogenesis, and hormone activity

  • S. B. Bilyavskaya
  • G. A. Bozhok
  • E. I. Legach
  • I. A. Borovoy
  • I. M. Gella
  • Yu. V. Malyukin
  • T. P. Bondarenko
Article
  • 55 Downloads

Abstract

A comprehensive assay of proliferative and hormonal activity in primary cell cultures derived from neonatal pig thyroid was carried out for the first time. Morphology and basal and thyroid-stimulating hormone (TSH)-stimulated secretion of thyroxin were evaluated in cultures, depending on the initial material placed into the culture: single cells or follicular conglomerates. Spontaneous and under chronic TSH stimulation folliculogenesis and formation of dome structures were assessed in culture. It was demonstrated that the cells expressed β-III-tubulin during prolonged cultivation with nerve growth factor.

Keywords

thyroid gland primary culture follicle thyrocyte thyroxin 

Abbreviations

PC

primary culture

TSH

thyrotropic hormone

FCF

follicular-cell fraction

FF

follicular fraction

TG

thyroid gland

NGF

nerve growth factor

PI

propidium iodine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernier-Valentin, F., Trouttet-Masson, S., Rabilloud, R., Selmi-Ruby, S., and Rousset, B., Three-dimensional organization of thyroid cells into follicle structures is a pivotal factor in the control of sodium/iodide symporter expression, Endocrinology, 2006, vol. 147, no. 4, pp. 2035–2042.PubMedCrossRefGoogle Scholar
  2. Byers, S.W., Citi, S., Anderson, J.M., and Hoxter, B., Polarized functions and permeability properties of rat epididymal epithelial cells in vitro, J. Reprod. Fertil., 1992, vol. 95, no. 2, pp. 385–396.PubMedCrossRefGoogle Scholar
  3. Coclet, J., Foureau, F., Ketelbant, P., Galand, P., and Dumont, J.E., Cell population kinetics in dog and human adult thyroid, Clin. Endocrinol. (Oxf.), 1989, vol. 31, pp. 655–665.CrossRefGoogle Scholar
  4. Davies, T.F., Latif, R., Minsky, N.C., and Ma. R., Clinical review: the emerging cell biology of thyroid stem cells, J. Clin. Endocrinol. Metab., 2011, vol. 96, pp. 2692–2702.PubMedCrossRefGoogle Scholar
  5. Dráberová, E., Del Valle, L., Gordon, J., Markova, V., Smejkalová, B., Bertrand, L., de Chadarevian, J.P., Agamanolis, D.P., Legido, A., Khalili, K., Dráber, P., and Katsetos, C.D., Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity, J. Neuropathol. Exp. Neurol., 2008, vol. 67, pp. 341–354.PubMedCrossRefGoogle Scholar
  6. Dumont, J.E., Lamy, F., Roger, P., and Maenhaut, C., Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors, Physiol. Rev., 1992, vol. 72, pp. 667–697.PubMedGoogle Scholar
  7. Fayet, G., Hovsépian, S., Dickson, J.G., and Lissitzky, S., Reorganization of porcine thyroid cells into functional follicles in a chemically defined, serum- and thyrotropin-free medium, J. Cell. Biol., 1982, vol. 93, pp. 479–488.PubMedCrossRefGoogle Scholar
  8. Fierabracci, A., Identifying thyroid stem/progenitor cells: advances and limitations, J. Endocrinol., 2012, vol. 213, pp. 1–13.PubMedCrossRefGoogle Scholar
  9. Fierabracci, A., Puglisi, M.A., Giuliani, L., Mattarocci, S., and Gallinella-Muzi, M., Identification of an adult stem/progenitor cell-like population in the human thyroid, J. Endocrinol., 2008, vol. 198, no. 3, pp. 471–487.PubMedCrossRefGoogle Scholar
  10. Hawley, T.S., and Hawley, R.G., Methods in Molecular Biology: Flow Cytometry Protocols, 2nd ed., New York: Humana Press Inc., 2004.CrossRefGoogle Scholar
  11. Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., and Kunz-Schughart, L.A., Multicellular tumor spheroids: an underestimated tool is catching up again, J. Biotechnol., 2010, vol. 148, pp. 3–15.PubMedCrossRefGoogle Scholar
  12. Hoshi, N., Kusakabe, T., Taylor, B.J., and Kimura, S., Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics, Endocrinology, 2007, vol. 148, pp. 4251–4258.PubMedCrossRefGoogle Scholar
  13. Huber, G.K. and Davies, T.F., Human fetal thyroid cell growth in vitro: system characterization and cytokine inhibition, Endocrinology, 1990, vol. 126, pp. 869–875.PubMedCrossRefGoogle Scholar
  14. Jouhilahti, E.M., Peltonen, S., and Peltonen, J., Class III beta-tubulin is a component of the mitotic spindle in multiple cell types, J. Histochem. Cytochem., 2008, vol. 56, pp. 1113–1119.PubMedCrossRefGoogle Scholar
  15. Katsetos, C.D., Del Valle, L., Geddes, J.F., Aldape, K., Boyd, J.C., Legido, A., Khalili, K., Perentes, E., and Mörk, S.J., Localization of neuronal class III beta-tubulin in oligodendrogliomas. Comparison with Ki-67 proliferative index and 1p/19q status, J. Neuropathol. Exper. Neurol., 2002, vol. 61, pp. 307–320.Google Scholar
  16. Kerkof, P.R., Long, P.J., and Chaikoff, I.L., In vitro effects of thyrotropic hormone on the pattern of organization of monolayer cultures of isolated sheep thyroid gland, Cells Endocrinol., 1964, vol. 74, pp. 170–179.CrossRefGoogle Scholar
  17. Khoruzhenko, A.I., New methodical approaches to thyrocyte cultivation in vitro with maintaining their follicular structures, Eksp. Onkol., 2002, vol. 2, pp. 99–104.Google Scholar
  18. Kogai, T., Curcio, F., Hyman, S., Cornford, E.M., Brent, G.A., and Hershman, J.M., Induction of follicle formation in long-term cultured normal human thyroid cells treated with thyrotropin stimulates iodide uptake but not sodium/iodide symporter messenger RNA and protein expression, J. Endocrinol., 2000, vol. 167, pp. 125–135.PubMedCrossRefGoogle Scholar
  19. Korzhevskii, D.E., Petrova, E.S., Kirik, O.V., Beznin, G.V., and Sukhorukova, E., Neural Markers used in the study of stem cell differentiation, Klet. Transplantol. Tkan. Inzhener., 2010, vol. 5, no. 3, pp. 57–63.Google Scholar
  20. Lan, L., Cui, D., Nowka, K., and Derwahl, M., Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes, J. Clin. Endocrinol. Metab., 2007, vol. 92, pp. 3681–3688.PubMedCrossRefGoogle Scholar
  21. Lechner, J., Hekl, D., Gatt, H., Voelp, M., and Seppi, T., Monitoring of the dynamics of epithelial dome formation using a novel culture chamber for long-term continuous live-cell imaging, Methods. Mol. Biol., 2011, vol. 763, pp. 169–178.PubMedCrossRefGoogle Scholar
  22. Lee, S., Choi, K., Ahn, H., Song, K., Choe, J., Lee, I., and Tu, J., Class III beta-tubulin expression suggests dynamic redistribution of follicular dendritic cells in lymphoid tissue, Eur. J. Cell Biol., 2005, vol. 84, pp. 453–459.PubMedCrossRefGoogle Scholar
  23. Luzyanina, T., Roose, D., Schenkel, T., Sester, M., Ehl, S., Meyerhans, A., and Bocharov, G., Numerical modelling of label-structured cell population growth using CFSE distribution data, Theor Biol. Med. Model., 2007, vol. 24, pp. 26.CrossRefGoogle Scholar
  24. Mikhailov, V.M., Sokolova, A.V., Serikov, V.B., Kaminskaya, E.M., Churilov, L.P., Trunin, E.M., Sizova, E.N., Kayukov, A.V., Bud’ko, M.B., and Zaichik, A.Sh., Bone marrow stem cells repopulate thyroid in x-ray regeneration in mice, Pathophysiology, 2012, vol. 19, pp. 5–11.PubMedCrossRefGoogle Scholar
  25. Nobuo, H., Takashi, K., Taylor, B.J., and Kimura, S., Side Population Cells In The Mouse Thyroid Exhibit Stem/Progenitor Cell-Like Characteristics, Endocrinology, 2007, vol. 148, pp. 4251–4258.CrossRefGoogle Scholar
  26. Park, K.M., Fogelgren, B., Zuo, X., Kim, J., Chung, D.C., and Lipschutz, J.H., Exocyst Sec10 protects epithelial barrier integrity and enhances recovery following oxidative stress, by activation of the MAPK pathway, J. Physiol. Renal. Physiol., 2010, vol. 298, pp. F818–826.CrossRefGoogle Scholar
  27. Postiglione, M.P., Parlato, R., Rodriguez-Mallon, A., Rosica, A., Mithbaokar, P., Maresca, M., and Marians, R.C., Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 15462–15467.PubMedCrossRefGoogle Scholar
  28. Ramelli, F., Studer, H., and Bruggisser, D., Pathogenesis of thyroid nodules in multinodular goiter, Amer. J. Pathol., 1982, vol. 109, pp. 215–223.Google Scholar
  29. Remy, L., Verrier, B., Michel-Bechet, M., Mazzella, E., and Athouel-Haon, A.M., Thyroid follicular morphogenesis mechanism: organ culture of the fetal gland as an experimental approach, J. Ultrastruct. Res., 1983, vol. 82, pp. 283–295.PubMedCrossRefGoogle Scholar
  30. Roger, P.P, Christophe, D., Dumont, J.E., and Pirson, I., The dog thyroid primary culture system: a model of the regulation of function, growth and differentiation expression by cAMP and other well-defined signaling cascades, Eur. J. Endocrinol., 1997, vol. 137, pp. 579–598.PubMedCrossRefGoogle Scholar
  31. Roger, P.P. and Dumont, J.E., Thyrotrophin and the differential expression of proliferation and differentiation in dog thyroid cells in primary culture, J. Endocrinol., 1983, vol. 96, pp. 241–249.PubMedCrossRefGoogle Scholar
  32. Rohani, L., Karbalaie, K., Vahdati, A., Hatami, M., Nasr-Esfahani, M.H., and Baharvand, H., Embryonic stem cell sphere: a controlled method for production of mouse embryonic stem cell aggregates for differentiation, Int. J. Artif. Organs, 2008, vol. 31, pp. 258–265.PubMedGoogle Scholar
  33. Shirokova, A.V., Apoptosis. Signaling network and changes of cell ion and water balance, Tsitologiia, 2007, vol. 49, no. 5, pp. 385–394.PubMedGoogle Scholar
  34. Sibirtsev, V.S., Fluorescent DNA probes: study of mechanisms of changes in spectral properties and features of practical application, Biochemistry (Moscow), 2007, vol. 72, no. 8, pp. 997–900.Google Scholar
  35. Sugahara, K., Caldwell, J.H., and Mason, R.J., Electrical currents flow out of domes formed by cultured epithelial cells, J. Cell Biol., 1984, vol. 99, pp. 1541–1544.PubMedCrossRefGoogle Scholar
  36. Suzuki, K., Mitsutake, N., Saenko, V., Suzuki, M., Matsuse, M., Ohtsuru, A., Kumagai, A., Uga, T., Yano, H., Nagayama, Y., and Yamashita, S., Dedifferentiation of human primary thyrocytes into multilineage progenitor cells without gene introduction, www.plosone.org., 2011, vol. 6, pp. 193–154.Google Scholar
  37. Takasu, N., Charrier, B., Mauchamp, J., and Lissitzky, S., Effect of gelatin on the cyclic AMP response of primocultured hog thyroid cells to acute thyrotropin stimulation, Biochim. Biophys. Acta, 1979, vol. 587, pp. 507–514.PubMedCrossRefGoogle Scholar
  38. Thomas, T., Nowka, K., Lan, L., and Derwahl, M., Expression of endoderm stem cell markers: evidence for the presence of adult stem cells in human thyroid glands, Thyroid, 2006, vol. 16, pp. 537–544.PubMedCrossRefGoogle Scholar
  39. Toda, S., Aoki, S., Suzuki, K., Koike, E., Ootani, A., Watanabe, K., Koike, N., and Sugihara, H., Thyrocytes, but not C cells, actively undergo growth and folliculogenesis at the periphery of thyroid tissue fragments in three-dimensional collagen gel culture, Cell Tissue Res., 2003, vol. 312, pp. 281–289.PubMedCrossRefGoogle Scholar
  40. Toda, S., Koike, N., and Sugihara, H., Cellular integration of thyrocytes and thyroid folliculogenesis: a perspective for thyroid tissue regeneration and engineering, Endocrinol. J., 2001a, vol. 48, pp. 407–425.Google Scholar
  41. Toda, S., Koike, N., and Sugihara, H., Thyrocyte integration, and thyroid folliculogenesis and tissue regeneration: perspective for thyroid tissue engineering, Pathol. Int., 2001b, vol. 51, pp. 403–417.PubMedCrossRefGoogle Scholar
  42. Toda, S., Yonemitsu, N., Hikichi, Y., Sugihara, H., and Koike, N., Differentiation of human thyroid follicle cells from normal subjects and Basedow’s disease in three-dimensional collagen gel culture, Pathol. Res. Pract., 1992, vol. 188, pp. 874–882.PubMedCrossRefGoogle Scholar
  43. , A., Jarry-Guichard, T., Statuto, M., Rousset, B., and Munari-Silem, Y., Formation of three-dimensional thyroid follicle-like structures by polarized FRT cells made communication competent by transfection and stable expression of the connexin-32 gene, Endocrinology, 2000, vol. 141, pp. 1403–1413.PubMedCrossRefGoogle Scholar
  44. Whitehead, R.H., Robinson, P.S., Williams, J.A., Bie, W., Tyner, A.L., and Franklin, J.L., Conditionally immortalized colonic epithelial cell line from a Ptk6 null mouse that polarizes and differentiates in vitro, J. Gastroenterol. Hepatol., 2008, vol. 23, pp. 1119–1124.PubMedCrossRefGoogle Scholar
  45. Yap, A.S., Stevenson, B.R., Keast, J.R., and Manley, S.W., Cadherin-mediated adhesion and apical membrane assembly define distinct steps during thyroid epithelial polarization and lumen formation, Endocrinology, 1995, vol. 136, pp. 4672–4680.PubMedCrossRefGoogle Scholar
  46. Yates, A., Chan, C., Strid, J., Moon, S., Callard, R., George, A.J., and Stark, J., Reconstruction of cell population dynamics using CFSE, BMC Bioinformatics, 2007, vol. 12, p. 196.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. B. Bilyavskaya
    • 1
  • G. A. Bozhok
    • 1
  • E. I. Legach
    • 1
  • I. A. Borovoy
    • 2
  • I. M. Gella
    • 2
  • Yu. V. Malyukin
    • 2
  • T. P. Bondarenko
    • 1
  1. 1.Institute for Problems of Cryobiology and CryomedicineNational Academy of Sciences of UkraineKharkivUkraine
  2. 2.Institute for Scintillation MaterialsNational Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations