Advertisement

Cell and Tissue Biology

, Volume 7, Issue 1, pp 21–28 | Cite as

The effect of a collagen tripeptide fragment (GER) on fibroblast adhesion and spreading depends on properties of an adhesive surface

  • V. P. Ivanova
  • Z. V. Kovaleva
  • V. V. Anokhina
  • A. I. Krivchenko
Article

Abstract

The effect of collagen tripeptide fragment GER on the adhesion and spreading of mouse embryonic fibroblasts STO to different substrates (polystyrene plastic, poly-L-lysine, fibronectin, gelatin) has been studied. It was found that tripeptide GER was involved in fibroblast adhesion and spreading. The cell response depended both on the mode of tripeptide addition to culture medium and the substrate type. Coincubation of fibroblasts with tripeptide stimulated the cell attachment and spreading to untreated plastic and plastic coated with fibronectin or gelatin but did not change cell adhesion to immobilized poly-L-lysine. Preincubation of cells with tripeptide resulted in partial inhibition of fibroblast adhesion and spreading on fibronectin- and gelatin-coated substrata. It was shown that activation and inhibition of adhesive processes after tripeptide treating was higher on fibronectin than gelatin. The data obtained support the assumption about concerted action of tripeptide GER (activity was dependent both on the used concentration of the tripeptide and the mode of tripeptide addition to culture medium) and chemical characteristics of substrate (polymers of styrene and L-lysine, ECM proteins in native (fibronectin) or partly denatured (gelatin) form) on the cell adhesion and spreading. The main targets that GER peptide may affect during the formation of cell-substrate interactions are discussed.

Keywords

collagen tripeptide fragment adhesion spreading fibronectin gelatin poly-L-lysine embryonic fibroblasts 

Abbreviations

ECM

extracellular matrix

SPARC

secreted protein, acidic, rich in cysteine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates, R.C., Rankin, L.M., Lucas, C.M., Scott, J.L., Krissansen, G.W., and Burns, G.F., Individual Embryonic Fibroblasts Express Multiple β Chains in Association with the αv Integrin Subunit. Loss of β3 Expression with Cell Confluence, J. Biol. Chem., 1991, vol. 266, pp. 18593–18599.PubMedGoogle Scholar
  2. Bornberg-Bauer, E., Beaussart, F., Kummerfeld, S.K., Teichmann, S.A., and Weiner, J., The Evolution of Domain Arrangements in Proteins and Interaction Networks, Cell. Mol. Life Sci., 2005, vol. 62, pp. 435–445.PubMedCrossRefGoogle Scholar
  3. Cantor, Ch. and Schimmel, P., Biofizicheskaya khimiya (Biophysical Chemistry), Moscow: Mir, 1985, vol. 3.Google Scholar
  4. Coates, J.C. and Harwood, A.J., Cell-Cell Adhesion and Signal Transduction during Dictyostelium Development, J. Cell Sci., 2001, vol. 114, pp. 4349–4358.PubMedGoogle Scholar
  5. Egeblad, M., Rasch, M.G., and Weaver, V.M., Dynamic Interplay between the Collagen Scaffold and Tumor Evolution, Curr. Opin. Cell Biol., 2010, vol. 22, pp. 697–706.PubMedCrossRefGoogle Scholar
  6. Eisenberg, J.L., Piper, J.L., and Mrksich, M., Using Self-Assembled Monolayers to Model Cell Adhesion to the 9th and 10th Type III Domains of Fibronectin, Langmuir, 2009, vol. 25, pp. 13942–13951.PubMedCrossRefGoogle Scholar
  7. Exposito, J.Y., Cluzel, C., Lethias, C., and Garrone, R., Tracing the Evolution of Vertebrate Fibrillar Collagens from an Ancestral α Chain, Matrix Biol., 2000, vol. 19, pp. 275–279.PubMedCrossRefGoogle Scholar
  8. Feng, Y., and Mrksich, M., The Synergy Peptide PHSRN and the Adhesion Peptide RGD Mediate Cell Adhesion through a Common Mechanism, Biochemistry, 2004, vol. 43, pp. 15811–15821.PubMedCrossRefGoogle Scholar
  9. Garcia, A.J., Vega, M.D., and Boettiger, D., Modulation of Cell Proliferation and Differentiation through Substrate-Dependent Changes in Fibronectin Conformation, Mol. Biol. Cell., 1999, vol. 10, pp. 785–798.PubMedGoogle Scholar
  10. Gigout, A., Jolicoeur, M., Nelea, M., Raynal, N., Farndale, R., and Buschmann, M.D., Chondrocyte Aggregation in Suspension Culture is GFOGER-GPP- and β1 Integrin-Dependent, J. Biol. Chem., 2008, vol. 283, pp. 31522–31530.PubMedCrossRefGoogle Scholar
  11. Hansen, L.K., Mooney, D.J., Vacanti, J.P., and Ingber, D.E., Integrin Binding and Cell Spreading on Extracellular Matrix Act at Different Points in the Cell Cycle to Promote Hepatocyte Growth, Mol. Biol. Cell, 1994, vol. 5, pp. 967–975.PubMedGoogle Scholar
  12. Heino, J., The Collagen Family Members as Cell Adhesion Proteins, BioEssays, 2007, vol. 29, pp. 1001–1010.PubMedCrossRefGoogle Scholar
  13. Humphries, J.D., Byron, A., and Humphries, M.J., Integrin Ligands at a Glance, J. Cell Sci., 2006, vol. 119, pp. 3901–3903.PubMedCrossRefGoogle Scholar
  14. Hynes, R.O., and Zhao, Q., The Evolution of Cell Adhesion, J. Cell Biol., 2000, vol. 150, pp. 89–95.CrossRefGoogle Scholar
  15. Hynes, R.O., Integrins. Bidirectional, Allosteric Signaling Machines, Cell, 2002, vol. 110, pp. 673–687.PubMedCrossRefGoogle Scholar
  16. Irvine, D.J., Hue, K.-A., Mayes, A.M., and Griffith, L.G., Stimulations of Cell-Surface Integrin Binding to Nanoscale-Clustered Adhesion Ligands, Biophys. J., 2002, vol. 82, pp. 120–132.PubMedCrossRefGoogle Scholar
  17. Ivanova, V.P., Kovaleva, Z.V., Zabelinskii, S.A., Grinchuk, T.M., and Krivchenko, A.I., The Role of the Collagen Tripeptide Fragment GER in the Adhesion Activation and Modification of Fatty Acid Composition in Membrane Phospholipids of CHO-K1 Cells, Tsitologiya, 2008, vol. 2, no. 4, pp. 309–316.Google Scholar
  18. Kadler, K.E., Hill, A., and Canty-Laird, E.G., Collagen Fibrillogenesis: Fibronectin, Integrins, and Minor Collagens as Organizers and Nucleators, Curr. Opin. Cell Biol., 2008, vol. 20, pp. 495–501.PubMedCrossRefGoogle Scholar
  19. Kim, J.K., Xu, Y., Xu, X., Keene, D.R., Gurusiddappa, S., Liang, X., Wary, K.K., and Höök, M., A Novel Binding Site in Collagen Type III for Integrins α1β1 and α2β1, J. Biol. Chem., 2005, vol. 280, pp. 32512–32520.PubMedCrossRefGoogle Scholar
  20. Knight, C.G., Morton, L.F., Peachey, A.R., Tuckwell, D.S., Farndale, R.W., and Barnes, M.J., The Collagen-Binding A-Domains of Integrins α1β1 and α2β1 Recognize the Same Specific Amino Acid Sequence, GFOGER, in Native (Triple-Helical) Collagens, J. Biol. Chem., 2000, vol. 275, pp. 35–40.PubMedCrossRefGoogle Scholar
  21. Leiss, M., Beckmann, K., Giro-s, A., Costell, M., and Fässler, R., The Role of Integrin Binding Sites in Fibronectin Matrix Assembly in vivo, Curr. Opin. Cell Biol., 2008, vol. 20, pp. 502–507.PubMedCrossRefGoogle Scholar
  22. Leitinger, B. and Hohenester, E., Mammalian Collagen Receptors, Matrix Biol., 2007, vol. 26, pp. 146–155.PubMedCrossRefGoogle Scholar
  23. Luo, B.H. and Springer, T.A., Integrin Structure and Conformational Signaling, Curr. Opin. Cell Biol., 2006, vol. 18, pp. 579–586.PubMedCrossRefGoogle Scholar
  24. Mao, Y. and Schwarzbauer, J.E., Fibronectin Fibrillogenesis, a Cell-Mediated Matrix Assembly Process, Matrix Biol., 2005, vol. 24, pp. 389–399.PubMedCrossRefGoogle Scholar
  25. Mould, A.P. and Humphries, M.J., Identification of a Novel Recognition Sequence for the Integrin Alpha4 Beta1 in the COOH-Terminal Heparin-Binding Domain of Fibronectin, EMBO J., 1991, vol. 10, pp. 4089–4095.PubMedGoogle Scholar
  26. Moyano, J.V., Carnemolla, B., Dominguez-Jimenez, C., Garcia-Gila, M., Albar, J.P., Sanchez-Aparicio, P., Leprini, A., Querze, G., Zardi, L., and Garcia-Pardo, A., Fibronectin Type III 5 Repeat Contains a Novel Cell Adhesion Sequence, KLDAPT, which Binds Activated α4β1 and α4β7 Integrins, J. Biol. Chem., 1997, vol. 272, pp. 24832–24836.PubMedCrossRefGoogle Scholar
  27. Mundel, T.M. and Kalluri, R., Type IV Collagen-Derived Angiogenesis Inhibitors, Microvasc. Res., 2007, vol. 74, pp. 85–89.PubMedCrossRefGoogle Scholar
  28. Pankov, R. and Yamada, K.M., Fibronectin at a Glance, J. Cell Sci., 2002, vol. 115, pp. 3861–3863.PubMedCrossRefGoogle Scholar
  29. Pankov, R., Cukierman, E., Katz, B.-Z., Matsumoto, K., Lin, D.C., Lin, S., Hahn, C., and Yamada, K.M., Integrin Dynamics and Matrix Assembly: Tensin-Dependent Trans-location of α5β1 Integrins Promotes Early Fibronectin Fibrillogenesis, J. Cell Biol., 2000, vol. 148, pp. 1075–1090.PubMedCrossRefGoogle Scholar
  30. Pereira-Leal, J.B., Levy, E.D., and Teichmann, S.A., The Origin and Evolution of Functional Modules: Lessons from Protein Complexes, Phil. Trans. R. Soc. B, 2006, vol. 361, pp. 507–517.PubMedCrossRefGoogle Scholar
  31. Pfaff, M., Aumailley, M., Specks, U., Knolle, J., Zerwes, H.G., and Timpl, R., Integrin and Arg-Gly-Asp Dependence of Cell Adhesion to the Native and Unfolded Triple Helix of Collagen Type VI, Exp. Cell Res., 1993, vol. 206, pp. 167–176.PubMedCrossRefGoogle Scholar
  32. Plow, E.E., Haas, T.A., Zhang, L., Loftus, J., and Smith, J.W., Ligand Binding to Integrins, J. Biol. Chem., 2000, vol. 275, pp. 21785–21788.PubMedCrossRefGoogle Scholar
  33. Reuter, M., Schwieger, C., Meister, A., Karlsson, G., and Blume, A., Poly-L-Lysines and Poly-L-Arginines Induce Leakage of Negatively Charged Phospholipid Vesicles and Translocate through the Lipid Bilayer upon Electrostatic Binding to the Membrane, Biophys. Chem., 2009, vol. 144, pp. 27–37.PubMedCrossRefGoogle Scholar
  34. Ruoslahti, E., RGD and Other Recognition Sequences for Integrins, Annu. Rev. Cell Dev. Biol., 1996, vol. 12, pp. 697–715.PubMedCrossRefGoogle Scholar
  35. Shulz, G. and Schirmer, R., Printsipy strukturnoy organizatsii belkov (Principles of Structural Organization of Proteins), Moscow: Mir, 1982.Google Scholar
  36. Sebé-Pedrós, A., Roger, A.J., Lang, F.B., King, N., and Ruiz-Trillo, I., Ancient Origin of the Integrin-Mediated Adhesion and Signaling Machinery, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 10142–10147.PubMedCrossRefGoogle Scholar
  37. Siljander, P.R., Hamaia, S.W., Peachy, A.R., Slatter, D.A., Smethurst, P.A., Ouwehand, W.H., Knight, C.G., and Farndale, R.W., Integrin Activation State Determines Selective for Novel Recognition Sites in Fibrillar Collagens, J. Biol. Chem., 2004, vol. 279, pp. 47763–47772.PubMedCrossRefGoogle Scholar
  38. Singh, P., Carraher, C., and Schwarzbauer, J.E., Assembly of Fibronectin Extracellular Matrix, Annu. Rev. Cell Dev. Biol., 2010, vol. 26, pp. 397–419.PubMedCrossRefGoogle Scholar
  39. Staatz, W.D., Fok, K.F., Zutter, M.M., Adams, S.P., Rodriguez, B.A., and Santoro, S.A., Identification of a Tetrapeptide Recognition Sequence for the alpha 2 beta 1 Integrin in Collagen, J. Biol. Chem., 1991, vol. 266, pp. 7363–7367.PubMedGoogle Scholar
  40. Sudhakar, A. and Boosani, C.S., Inhibition of Tumor Angiogenesis by Tumstatin: Insights into Signaling Mechanisms and Implications in Cancer Regression, Pharmaceut. Res., 2008, vol. 25, pp. 2731–2739.CrossRefGoogle Scholar
  41. Sweeney, S.M., Orgel, J.P., Fertala, A., McAuliffe, J.D., Turner, K.R., DiLullo, G.A., Chen, S., Antipova, O., Perumal, S., Ala-Kokko, L., Forlino, A., Cabral, W.A., Barnes, A.M., Marini, J.C., and San Antonio, J.D., Candidate Cell and Matrix Interaction Domains on the Collagen Fibril, the Predominant Protein of Vertebrates, J. Biol. Chem., 2008, vol. 283, pp. 21187–21197.PubMedCrossRefGoogle Scholar
  42. Takada, Y., Ye, X., and Simon, S., The Integrins, Genome Biol., 2007, vol. 8, pp. 215.1–215.9.CrossRefGoogle Scholar
  43. Takagi, J., Structural Basis for Ligand Recognition by Integrins, Curr. Opin. Cell Biol., 2007, vol. 19, pp. 557–564.PubMedCrossRefGoogle Scholar
  44. Thodeti, C.K., Albrechtsen, R., Grauslund, M., Asmar, M., Larsson, C., Takada, Y., Mercurio, A.M., Couchman, J.R., and Wewer, U.M., ADAM12/Synde-can-4 Signaling Promotes β1 Integrin-Dependent Cell Spreading through Protein Kinase Cα and RhoA, J. Biol. Chem., 2003, vol. 278, pp. 9576–9584.PubMedCrossRefGoogle Scholar
  45. Underwood, P.A., Bennett, F.A., Kirkpatrick, A., Bean, P.A., and Moss, B.A., Evidence for the Location of a Binding Sequence for the α2β1 Integrin of Endothelial Cells, in the β1 Subunit of Laminin, Biochem. J., 1995, vol. 309, pp. 765–771.PubMedGoogle Scholar
  46. Van der Flier, A. and Sonnenberg, A., Function and Interactions of Integrins, Cell Tissue Res., 2001, vol. 305, pp. 285–298.PubMedCrossRefGoogle Scholar
  47. Van der Rest, M. and Garrone, R., Collagen Family of Proteins, FASEB J., 1991, vol. 5, pp. 2814–2823.PubMedGoogle Scholar
  48. Yamada, Y., Avvedimento, V.E., Mudryj, M., Ohkubo, H., Vogeli, G., Irani, M., Pastan, I., and de Crombrugghe, B., The Collagen Gene: Evidence for Its Evolutionary Assembly by Amplification of a DNA Segment Containing an Exon of 54 bp, Cell, 1980, vol. 22, pp. 887–892.PubMedCrossRefGoogle Scholar
  49. Zannetti, A., Del Vecchio, S., Iommelli, F., Del Gatto, A., De Luca, S., Zaccaro, L., Papaccioli, A., Sommella, J., Panico, M., Speranza, A., Grieco, P., Novellino, E., Saviano, M., Pedone, C., and Salvatore, M., Imaging of αvβ3 Expression by a Bifunctional Chimeric RGD Peptide not Cross-Reacting with αvβ5, Clin. Cancer Res., 2009, vol. 15, pp. 5224–5233.PubMedCrossRefGoogle Scholar
  50. Zemljic, J.S., Znidarcic, T., Svetina, S., and Batista, U., The Effect of Substrate and Adsorbed Proteins on Adhesion, Growth and Shape of CaCo-2 Cells, Cell Biol. Int., 2007, vol. 31, pp. 1097–1108.CrossRefGoogle Scholar
  51. Zimerman, B., Volberg, T., and Geiger, B., Early Molecular Events in the Assembly of the Focal Adhesion-Stress Fiber Complex during Fibroblast Spreading, Cell Motil. Cytoskeleton, 2004, vol. 58, pp. 143–159.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. P. Ivanova
    • 1
  • Z. V. Kovaleva
    • 2
  • V. V. Anokhina
    • 3
  • A. I. Krivchenko
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations