Cell and Tissue Biology

, Volume 6, Issue 4, pp 341–347 | Cite as

Assembly of actin filaments induced by sequestration of membrane cholesterol in transformed cells

  • T. N. Efremova
  • V. I. Chubinskij-Nadezhdin
  • S. Yu. Khaitlina
  • E. A. Morachevskaya
Article

Abstract

Cholesterol is a major lipid component of the plasma membrane that plays an important role in various signaling processes in mammalian cells. Our study is focused on the role of membrane cholesterol in the organization and dynamics of actin cytoskeleton. Experiments were performed on cultured transformed cells characterized by a poorly developed actin network and less prominent stress fibers: human embryonic kidney HEK293, human epidermoid larynx carcinoma HEp-2, and mouse fibroblasts 3T3-SV40. Using Factin labeling with rhodamine phalloidin, actin cytoskeleton rearrangements were analyzed after sequestration of membrane cholesterol by cyclic oligosaccharide methyl-beta-cyclodextrin and polyene macrolide antibiotic filipin. The cells treated with these agents displayed similar reorganization of actin cytoskeleton involving filament assembly. In HEp-2 carcinoma cells and 3T3-SV40 fibroblasts, cholesterol-sequestering reagents induced intense stress fiber formation and enhanced cell spreading; i.e., features of transformed phenotype reversion were observed. The cytoskeleton rearrangements are probably initiated by disruption of lipid raft integrity that is critically dependent on the level of the membrane cholesterol.

Keywords

plasma membrane actin cytoskeleton cholesterol lipid microdomains human leukemia methyl-beta-cyclodextrin filipin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur, J.R., Heinecke, K.A., and Seyfried, T.N., Filipin Recognizes Both GM1 and Cholesterol in GM1 Gangliosidosis Mouse Brain, J. Lipid Res., 2011, vol. 52, no. 7, pp. 1345–1351.PubMedCrossRefGoogle Scholar
  2. Brown, D.A., and London, E., Structure and Function of Sphingolipid- and Cholesterol-Rich Membrane Rafts, J. Biol. Chem., 2000, vol. 275, pp. 17221–17224.PubMedCrossRefGoogle Scholar
  3. Byfield, F.J., Aranda-Espinoza, H., Romanenko, V.G., Rothblat, G.H., and Levitan, I., Cholesterol Depletion Increases Membrane Stiffness of Aortic Endothelial Cells, Biophys. J., 2004, vol. 87, pp. 3336–3343.PubMedCrossRefGoogle Scholar
  4. Chichili, G.R. and Rodgers, W., Clustering of Membrane Raft Proteins by Actin Cytoskeleton, J. Biol. Chem., 2007, vol. 282, pp. 36682–36691.PubMedCrossRefGoogle Scholar
  5. Christian, A.E., Haynes, M.P., Phillips, M.C., and Rothblat, G.H., Use of Cyclodextrins for Manipulating Cellular Cholesterol Content, J. Lipid Res., 1997, vol. 38, pp. 2264–2272.PubMedGoogle Scholar
  6. Chubinskiy-Nadezhdin, V.I., Negulyaev, Y.A., and Morachevskaya, E.A., Cholesterol Depletion-Induced Inhibition of Stretch-Activated Channels Is Mediated via Actin Rearrangement, Biochem. Biophys. Res. Commun., 2011, vol. 412, pp. 80–85.PubMedCrossRefGoogle Scholar
  7. Efremova, T.N., Chubinskii-Nadezhdin, V.I., Negulyaev, Yu.A., Khaitlina, S.Yu., and Morachevskaya, E.A., Effect of Extraction of Membrane Cholesterol on the Characteristics of Mechanosensitive Channels and the Actin Cytoskeleton, in Sb. “Retseptsiya i vnutrikletochnaya signalizatsiya” (Reception and Intracellular Signaling: Collected Papers), Pushchino, 2009, pp. 42–45.Google Scholar
  8. Efremova, T.N., Kirpichnikova, K.M., Khaytlina, S.Yu., and Gamaley, I.A., Antioxidants-Induced Rearrangements of Actin Cytoskeleton in 3T3 and 3T3-SV40 Fibroblasts, Tsitologiya, 2004, vol. 46, no. 5 395–403.Google Scholar
  9. Gamaley, I., Efremova, T., Kirpichnikova, K., Kever, L., Komissarchik, Y., Polozov, Y., and Khaitlina, S., N-Acetylcysteine-Induced Changes in Susceptibility of Transformed Eukaryotic Cells to Bacterial Invasion, Cell Biol. Int., 2006, vol. 30, pp. 319–325.PubMedCrossRefGoogle Scholar
  10. Harder, T., and Simons, K., Clusters of Glycolipid and Glycosyl-Phosphatidylinositol-Anchored Proteins in Lymphoid Cells: Accumulation of Actin Regulated by Local Tyrosine Phosphorylation, Eur. J. Immunol., 1999, vol. 29, pp. 556–562.PubMedCrossRefGoogle Scholar
  11. Ivkov, V.G. and Berestovsky, T.N., Lipidnyi bisloi biologicheskikh membran (Lipid Bilayer of Biological Membranes), Moscow: Nauka, 1982.Google Scholar
  12. Klausen, T.K., Hougaard, C., Hoffmann, E.K., and Pedersen, S.F., Cholesterol Modulates the Volume-Regulated Anion Current in Ehrlich-Lettre Ascites Cells via Effects on Rho and F-Actin, Am. J. Physiol., 2006, vol. 291, pp. 757–771.CrossRefGoogle Scholar
  13. Kwik, J., Boyle, S., Fooksman, D., Margolis, L., Sheetz, M.P., and Edidin, M., Membrane Cholesterol, Lateral Mobility, and the Phosphatidylinositol 4,5-Bisphosphate-Sependent Organization of Cell Actin, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 13964–13969.PubMedCrossRefGoogle Scholar
  14. Lingwood, D. and Simons, K., Lipid Rafts As a Membrane-Organizing Principle, Science, 2010, vol. 327, pp. 46–50.PubMedCrossRefGoogle Scholar
  15. Morachevskaya, E.A., Sudarikova, A.V., and Negulyaev, Y.A., Mechanosensitive Channel Activity and F-Actin Organization in Cholesterol-Sepleted Human Leukaemia Cells, Cell Biol. Int., 2007, vol. 31, pp. 374–381.PubMedCrossRefGoogle Scholar
  16. Nebl, T., Pestonjamasp, K.N., Leszyk, J.D., Crowley, J.L., Oh, S.W., and Luna, E.J., Proteomic Analysis of a Detergent-Resistant Membrane Skeleton from Neutrophil Plasma Membranes, J. Biol. Chem., 2002, vol. 277, pp. 43399–43409.PubMedCrossRefGoogle Scholar
  17. Needham, D. and Nunn, R.S., Elastic Deformation and Failure of Lipid Bilayer Membranes Containing Cholesterol, Biophys. J., 1990, vol. 58, pp. 997–1009.PubMedCrossRefGoogle Scholar
  18. Pawlak, G., and Helfman, D.M., Cytoskeletal Changes in Cell Transformation and Tumorigenesis, Curr. Opin, Genet. Dev., 2001, vol. 11, no. 1, pp. 41–7.CrossRefGoogle Scholar
  19. Pike, L.J., The Challenge of Lipid Rafts, J. Lipid Res., 2009, vol. 50, pp. 323–328.CrossRefGoogle Scholar
  20. Qi, M., Liu, Y., Freeman, M.R., and Solomon, K.R., Cholesterol-Regulated Stress Fiber Formation, J. Cell Biochem., 2009, vol. 106, pp. 1031–1040.PubMedCrossRefGoogle Scholar
  21. Rao, J.Y., and Li, N., Microfilament Actin Remodeling as a Potential Target for Cancer Drug Development, Curr. Cancer Drug Targets, 2004, vol. 4, pp. 345–354.PubMedCrossRefGoogle Scholar
  22. Rovenskii, Yu.A. and Vasil’ev, Yu.M., Morphogenetic Response of Cells and Their Disorders in Neoplastic Transformation, in Kantserogenez (Carcinogenesis), Moscow: Meditsina, 2004, pp. 376–414.Google Scholar
  23. Zidovetzki, R., and Levitan, I., Use of Cyclodextrins to Manipulate Plasma Membrane Cholesterol Content: Evidence, Misconceptions and Control Strategies, Rev. Biochim. Biophys. Acta, 2007, vol. 1768, pp. 1311–1324.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • T. N. Efremova
    • 1
  • V. I. Chubinskij-Nadezhdin
    • 1
  • S. Yu. Khaitlina
    • 1
  • E. A. Morachevskaya
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations