Skip to main content
Log in

Parameters that affect estimation of nucleolar proteins’ mobility in living cells by the FRAP method with the example of protein fibrillarin

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The fluorescence recovery after photobleaching (FRAP) method, in combination with confocal laser scanning microscopy, represents one of the basic approaches to studying the properties of proteins in living mammalian cells. However, the data of different authors on the dynamic properties of the same protein and even in cells of the same type can differ greatly. Until now, the reasons for such discrepancies have not been specifically analyzed. In the present work, using the example of nucleolar protein fibrillarin fused with EGFP, we studied the effect of the area of the irradiated region (the region of interest (ROI)) and temperature conditions of experiments on the main dynamic characteristics of the protein—the portion of the mobile fraction of protein and the half-recovery time of fluorescence after photobleaching (t 1/2). The obtained results have shown that both parameters affect markedly the estimation of the fibrillarin-EGFP mobility in HeLa cells. It was concluded that, in FRAP experiments the ROI area can be standardized and, where possible, minimized. In addition, when analyzing the dynamic characteristics of the nucleolar proteins, which participate in the temperature-dependent enzymatic reactions, it is necessary to maintain standard temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aris, J.P. and Blobel, G., cDNA Cloning and Sequencing of Human Fibrillarin, a Conserved Nucleolar Protein Recognized by Autoimmune Antisera, Cell Biol., 1991, vol. 88, pp. 931–935.

    CAS  Google Scholar 

  • Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., and Webb, W.W., Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics, Biophysics, 1976, vol. J 16, pp. 1055–1069.

    Google Scholar 

  • Barygina, V.V., Veiko, V.P., and Zatsepina, O.V., Analysis of Nucleolar Protein Fibrillarin Mobility and Functional State in Living HeLa Cells, Biochemistry (Moscow), 2010, vol. 75, no. 8, pp. 979–988.

    Article  CAS  Google Scholar 

  • Braga, J., Desterro, J.M.P., and Carmo-Fonseca, M., Intracellular Macromolecular Mobility Measured by Fluorescence Recovery after Photobleaching with Confocal Laser Scanning Microscopes, Mol. Biol. Cell, 2004, vol. 15, pp. 4749–4760.

    Article  PubMed  CAS  Google Scholar 

  • Carrero, G., McDonald, D., Crawford, E., de, Vries, G., and Hendzel, M.J., Using FRAP and Mathematical Modeling to Determine the in vivo Kinetics of Nuclear Proteins, Methods, 2003, vol. 29, pp. 14–28.

    Article  PubMed  CAS  Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C., Green Fluorescent Protein as a Marker for Gene Expression, Science, 1994, vol. 263, pp. 802–805.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D. and Huang, S., Nucleolar Components Involved in Ribosome Biogenesis Cycle between the Nucleolus and Nucleoplasm in Interphase Cells, J. Cell Biol., 2001, vol. 153, pp. 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Chudakov, D.M., Matz, M.V., Lukyanov, S., and Lukyanov, K.A., Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues, Physiol. Rev., 2010, vol. 90, pp. 1103–1163.

    Article  PubMed  CAS  Google Scholar 

  • Dobrucki, J.W., Feret, D., and Noatynska, A., Scattering of Exciting Light by Live Cells in Fluorescence Confocal Imaging: Phototoxic Effects and Relevance for FRAP Studies, Biophysics, 2007, vol. 93, pp. 1778–1786.

    Article  CAS  Google Scholar 

  • Dundr, M., Misteli, T., and Olson, M.O.J., The Dynamics of Postmitotic Reassembly of the Nucleolus, J. Cell Biol., 2000, vol. 150, pp. 433–446.

    Article  PubMed  CAS  Google Scholar 

  • Gerbi, S.A., Borovjagin, A.V., and Lange, T.S., The Nucleolus: A Site of Ribonucleoprotein Maturation, Curr. Opin. Cell Biol., 2003, vol. 15, pp. 318–325.

    Article  PubMed  CAS  Google Scholar 

  • Gurskaya, N.G., Verkhusha, V.V., Shcheglov, A.S., Staroverov, D.B., Chepurnykh, T.V., Fradkov, A.F., Lukyanov, Sergey S., and Lukyanov, K.A., Engineering of a Monomeric Green-to-Red Photoactivatable Fluorescent Protein Induced by Blue Light, Nature Biotechnol., 2006, vol. 24, pp. 461–465.

    Article  CAS  Google Scholar 

  • Hernandez-Verdun, D., Nucleolus: From Structure to Dynamics, Histochem. Cell Biol., 2006, vol. 125, pp. 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Hoogstraten, D., Nigg, A.L., Heath, H., Mullenders, L.H., van, Driel, R., Hoeijmakers, J.H., Vermeulen, W., and Houtsmuller, A.B., Rapid Switching of TFIIH between RNA Polymerase I and II Transcription and DNA Repair in vivo, Mol. Cell., 2002, vol. 10, pp. 1163–1174.

    Article  PubMed  CAS  Google Scholar 

  • Houtsmuller, A.B., Fluorescence Recovery after Photobleaching: Application to Nuclear Proteins, Adv. Biochem. Engin./Biotechnol., 2005, vol. 95, pp. 177–199.

    CAS  Google Scholar 

  • Klonis, N., Rug, M., Harper, I., Wickham, M., Cowman, A., and Tilley, L., Fluorescence Photobleaching Analysis for the Study of Cellular Dynamics, Eur. Biophys., 2002, vol. 31, pp. 36–51.

    Article  CAS  Google Scholar 

  • Lam, Y.W., Trinkle-Mulcahy, L., and Lamond, A.I., The Nucleolus, J. Cell Sci., 2005, vol. 118, pp. 1335–1337.

    Article  PubMed  CAS  Google Scholar 

  • Leung, A.K.L., Andersen, J.S., Mann, M., and Lamond, A.I., Bioinformatic Analysis of the Nucleolus, Biochemistry, 2003, vol. J 376, pp. 553–569.

    Google Scholar 

  • Louvet, E., Junéra, H.R., Le Panse, S., and Danièle Hernandez-Verdun, D., Dynamics and Compartmentation of the Nucleolar Processing Machinery, Exper. Cell Res., 2005, vol. 304, pp. 457–470.

    Article  CAS  Google Scholar 

  • Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G.H., Photobleaching and Photoactivation: Following Protein Dynamics in Living Cells, Nat. Cell Biol., 2003, suppl., pp. S7–14.

  • Lippincott-Schwartz, J., Snapp, E., and Kenworthy, A., Studying Protein Dynamics in Living Cells, Nat. Rev. Mol. Cell Biol., 2001, vol. 2, pp. 444–456.

    Article  PubMed  CAS  Google Scholar 

  • Lischwe, M.A., Ochs, R.L., Reddy, R., Cook, R.G., Yeoman, L.C., Tan, E.M., Reichlin, M., and Busch, H., Purification and Partial Characterization of a Nucleolar Scleroderma Antigen (Mr = 34000; pI, 8.5) Rich in NG,NG-Dimethylarginine, J. Biol. Chem., 1985, vol. 260, pp. 14304–14310.

    PubMed  CAS  Google Scholar 

  • Meyvis, T.K., De Smedt, S.C., Van, Oostveldt, P., and Demeester, J., Fluorescence Recovery after Photobleaching: A Versatile Tool for Mobility and Interaction Measurements in Pharmaceutical Research, Pharm. Res., 1999, vol. 16, pp. 1153–1162.

    Article  PubMed  CAS  Google Scholar 

  • Müeller, F., Mazza, D., Stasevich, T.J., and McNally, J.G., FRAP and Kinetic Modeling in the Analysis of Nuclear Protein Dynamics: What Do We Really Know? Curr. Opin. Cell Biol., 2010, vol. 22, pp. 403–411.

    Article  PubMed  Google Scholar 

  • Mukhar’yamova, K.Sh. and Zatsepina, O.V., Visualization of Ribosomal Genes Transcription in SPEV Culture Cells Using Bromouridine Triphosphate, Tsitologiya, 2001, vol. 43, no. 8, pp. 792–795.

    Google Scholar 

  • Negi, S.S. and Olson, M.O., Effects of Interphase and Mitotic Phosphorylation on the Mobility and Location of Nucleolar Protein B23, J. Cell Sci., 2006, vol. 119, pp. 3676–3685.

    Article  PubMed  CAS  Google Scholar 

  • Olson, M.O., Dundr, M., and Szebeni, A., The Nucleolus: An Old Factory with Unexpected Capabilities, Trends Cell Biol., 2000, vol. 10, pp. 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Phair, R.D. and Misteli, T., High Mobility of Proteins in the Mammalian Cell Nucleus, Nature, 2000, vol. 404, pp. 604–609.

    Article  PubMed  CAS  Google Scholar 

  • Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., Primary Structure of the Aequorea Victoria Green-Fluorescent Protein, Gene, 1992, vol. 111, pp. 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Pucadyil, T.J. and Chattopadhyay, A., Cholesterol Depletion Induces Dynamic Confinement of the G-protein Coupled Serotonin (1A) Receptor in the Plasma Membrane of Living Cells, Biochim. Biophys. Acta, 2007, vol. 1768, pp. 655–668.

    Article  PubMed  CAS  Google Scholar 

  • Reits, E.A. and Neefjes, J.J., From Fixed to FRAP: Measuring Protein Mobility and Activity in Living Cells, Nat. Cell Biol., 2001, vol. 3, pp. E145–E147.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., and Pozzan, T., Chimeric Green Fluorescent Protein as a Tool for Visualizing Subcellular Organelles in Living Cells, Current Biol., 1995, vol. 5, pp. 635–642.

    Article  CAS  Google Scholar 

  • Saxena, R., and Chattopadhyay, A., Membrane Organization and Dynamics of the Serotonin(1A) Receptor in Live Cells, J. Neurochem., 2011, vol. 116, pp. 726–733.

    Article  PubMed  CAS  Google Scholar 

  • Snaar, S., Wiesmeijer, K., Jochemsen, A.G., Tanke, H.J., and Dirks, R.W., Mutational Analysis of Fibrillarin and Its Mobility in Living Human Cells, J. Cell Biol., 2000, vol. 151, pp. 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Sprague, B.L., Pego, R.L., Stavreva, D.A., and McNally, J.G., Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching, Biophysics, 2004, vol. J 86, pp. 3473–3495.

    Google Scholar 

  • Sprague, B.L. and McNally, J.G., FRAP Analysis of Binding: Proper and Fitting, Trends Cell Biol., 2005, vol. 15, pp. 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Stasevich, T.J., Mueller, F., Michelman-Ribeiro, A., Rosales, T., Knutson, J.R., and McNally, J.G., Cross-Validating FRAP and FCS to Quantify the Impact of Photobleaching on in vivo Binding Estimates, Biophysics, 2010, vol. J 99, pp. 3093–3101.

    Google Scholar 

  • Tollervey, D., Temperature-Sensitive Mutations Demonstrate Roles for Yeast Fibrillarin in Pre-rRNA Processing, Pre-rRNA Methylation, and Ribosome Assembly, Cell, 1993, vol. 72, pp. 443–457.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, K. and Parnaik, V.K., Differential Dynamics of Splicing Factor SC35 during the Cell Cycle, J. Biosci., 2008, vol. 33, pp. 345–354.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R.Y., The Green Fluorescent Protein, Annu. Rev. Biochem., 1998, vol. 67, pp. 509–544.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R.Y., Ernst, L., and Waggoner, A., Fluorophores for Confocal Microscopy: Photophysics and Photochemistry, in Handbook of Biological Confocal Microscopy, New York: Springer Science, Business Media, 2006.

    Google Scholar 

  • Van Royen, M.E., Dinant, C., Farla, P., Trapman, J., and Houtsmuller, A.B., FRAP and FRET Methods to Study Nuclear Receptors in Living Cells, in Methods in Molecular Biology: the Nuclear Receptor Superfamily, New York: Humana Press, 2009, pp. 69–96.

    Chapter  Google Scholar 

  • Van Royen, M.E., Farla, P., Mattern, K.A., Geverts, B., Trapman, J., and Houtsmuller, A.B., Fluorescence Recovery after Photobleaching (FRAP) to Study Nuclear Protein Dynamics in Living Cells, in The Nucleus, Vol. 2: Chromatin, Transcription, Envelope, Proteins, Dynamics, and Imaging, New York: Humana Press, 2008, pp. 363–385.

    Google Scholar 

  • Verkman, A.S., Solute and Macromolecule Diffusion in Cellular Aqueous Compartments, Trends Biochem. Sci., 2002, vol. 27, pp. 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Boisvert, D., Kim, K.K., Kim, R., and Kim, S.-H., Crystal Structure of a Fibrillarin Homologue from Methanococcus jannaschii, a Hyperthermophile, at 1.6 — tion, EMBO, 2000, vol. J 19, pp. 317–323.

    Google Scholar 

  • White, J. and Stelzer, E., Photobleaching GFP Reveals Protein Dynamics Inside live Cells, Trends Cell Biol., 1999, vol. 9, pp. 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T.T., Cheng, L., and Kain, S.R., Optimized Codon Usage and Chromophore Mutations Provide Enhanced Sensitivity with the Green Fluorescent Protein, Nucleic Acids Res., 1996, vol. 24, pp. 4592–4593.

    Article  PubMed  CAS  Google Scholar 

  • Zubova, N.N., Bulavina, A.Yu., and Savitskii, A.P., The Spectral and Physicochemical Properties of Green (GFP) and Red (drFP583) Fluorescent Proteins, Usp. Biol. Khim., 2003, vol. 43, pp. 163–224.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Barygina or O. V. Zatsepina.

Additional information

Original Russian Text © V.V. Barygina, A.A. Mironova, O.V. Zatsepina, 2012, published in Tsitologiya, 2012, Vol. 54, No. 1, pp. 17–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barygina, V.V., Mironova, A.A. & Zatsepina, O.V. Parameters that affect estimation of nucleolar proteins’ mobility in living cells by the FRAP method with the example of protein fibrillarin. Cell Tiss. Biol. 6, 128–136 (2012). https://doi.org/10.1134/S1990519X12020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X12020034

Keywords

Navigation