Cell and Tissue Biology

, Volume 6, Issue 2, pp 147–153 | Cite as

Effect of formaldehyde at a low concentration on proliferation and organization of cytoskeleton of cultured cells

  • A. A. Aizenshtadt
  • E. B. Burova
  • V. V. Zenin
  • D. E. Bobkov
  • I. V. Kropacheva
  • G. P. Pinaev
Article

Abstract

Formaldehyde at a concentration of up to 3–4% (1.07–1.42 M) is one of the most widespread and well-known fixatives of organs, tissues, and cells. In the present work, it was shown that formaldehyde at a concentration of up to 60 μM (0.0002%) did not produce negative effect on the viability of cells of lines of A431, HEK293, and primary fibroblasts, but increased the proliferative activity of the A431 cells. This action on the A431 cells can be explained by the activation of a receptor of the epidermal growth factor as a result of its interaction with formaldehyde.

Keywords

formaldehyde proliferation A431 cell line EGF receptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Are, A., Pinaev, G., Burova, E., and Lindberg, U., Attachment of A-431 Cells on Immobilized Antibodies to the EGF Receptor Promotes Cell Spreading and Reorganization of the Microfilament System, Cell Motil. Cytoskel., 2001, vol. 48, pp. 24–36.CrossRefGoogle Scholar
  2. Bobkov, D.E., Kropacheva, I.V., and Pinaev, G.P., Multimolecular Complexes Containing the p65 Subunit of the NFκB Factor and Cytoskeletal Proteins in A431 Cells, Biol. Membr., 2010, vol. 27, pp. 133–137.Google Scholar
  3. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.PubMedCrossRefGoogle Scholar
  4. Feick, P., Haas, S.R., Singer, M.V., and Bocker, U., Low-Dose Exposure of Intestinal Epithelial Cells to Formaldehyde Results in MAP Kinase Activation and Molecular Alteration of the Focal Adhesion Protein Paxillin, Toxicology, 2006, vol. 219, pp. 60–72.PubMedCrossRefGoogle Scholar
  5. Han, J., Lee, J.-D., Bibbs, L., and Ulevitch, R.J., A MAP Kinase Targeted by Endotoxin and Hyperosmolarity in Mammalian Cells, Science, 1994, vol. 265, pp. 808–811.PubMedCrossRefGoogle Scholar
  6. Hester, S.D., Benavides, G.B., Yoon, L., Morgan, K.T., Zou, F., Barry, W., and Wolf, D.C., Formaldehyde-Induced Gene Expression in F344 Rat Nasal Respiratory Epithelium, Toxicology, 2003, vol. 187, pp. 13–24.PubMedCrossRefGoogle Scholar
  7. Kageyama, R., Merlino, G.T., and Pastan, I., Epidermal Growth Factor (EGF) Receptor Gene Transcription. Requirement for Sp1 and an EGF Receptor-Specific Factor, J. Biol. Chem., 1998, vol. 5, pp. 6329–6336.Google Scholar
  8. Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.PubMedCrossRefGoogle Scholar
  9. Lee, M., Kim, Y., Na, Y., Kim, S-H., Shin, Y.K., Lee, B.-H., Shin, H.-S., and Lee, M.-O., Identification of Formaldehyde-Responsive Genes by Suppression Subtractive Hybridization, Toxicology, 2008, vol. 243, pp. 224–235.PubMedCrossRefGoogle Scholar
  10. Meloche, S., Seuwen, K., Pagès, G., and Pouysségur, J., Biphasic and Synergistic Activation of P44mapk (ERK1) by Growth Factors: Correlation between Late Phase Activation and Mitogenicity, Mol. Endocrinol., 1992, vol. 6, pp. 845–54.PubMedCrossRefGoogle Scholar
  11. Murakami-Mori, K., Taga, T., Kishimoto, T., and Nakamura, S., AIDS-Associated Kaposi’s Sarcoma (KS) Cells Express Oncostatin M (OM)-Specific Receptor but not Leukemia Inhibitory Factor/OM Receptor or Interleukin-6 Receptor. Complete Block of OM-Induced KS Cell Growth and OM Binding by Anti-gp130 Antibodies, J. Clin. Invest., 1995, vol. 96, pp. 1319–1327.PubMedCrossRefGoogle Scholar
  12. Qian, X., Hujun, H., Guangtao, Y., and Xu, Y., Effect of Formaldehyde on Cellular Proliferation of HEK293 Cells, Bioinform. Biomed. Eng., 2007, vol. 1, pp. 464–466.Google Scholar
  13. Restani, P. and Galli, C.L., Oral Toxicity of Formaldehyde and Its Derivatives, Crit. Rev. Toxicol., 1991, vol. 21, pp. 315–328.PubMedCrossRefGoogle Scholar
  14. Romijn, H.J., van, Uum, J.F.M., Bredijk, I., Emmering, J., Radu, I., and Pool, C.W., Double Immunolabeling of Neuropeptides in the Human Hypothalamus as Analyzed by Confocal Laser Scanning Fluorescence Microscopy, J. Histochem. Cytochem., 1999, vol. 47, pp. 229–235.PubMedCrossRefGoogle Scholar
  15. Rosette, C. and Karin, M., Cytoskeletal Control of Gene Expression: Depolymerization of Microtubules Activates NFκB, J. Cell Biol., 1995, vol. 128, pp. 1111–1119.PubMedCrossRefGoogle Scholar
  16. Saito, Y., Nishio, K., Yoshida, Y., and Niki, E., Cytotoxic Effect of Formaldehyde with Free Radicals via Increment of Cellular Reactive Oxygen Species, Toxicology, 2005, vol. 1, pp. 235–45.CrossRefGoogle Scholar
  17. Yu, P.H. and Deng, Y.L., Endogenous Formaldehyde as a Potential Factor of Vulnerability of Atherosclerosis: Involvement of Semicarbazide-Sensitive Amine Oxidase-Mediated Methylamine Turnover, Atherosclerosis, 1998, vol. 140, pp. 357–363.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Aizenshtadt
    • 1
  • E. B. Burova
    • 1
  • V. V. Zenin
    • 1
  • D. E. Bobkov
    • 1
  • I. V. Kropacheva
    • 1
  • G. P. Pinaev
    • 1
    • 2
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Faculty of Biomedical Physics and BioengineeringSt. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations