Skip to main content
Log in

Remodeling of rat cardiomyocytes after neonatal cryptosporidiosis. I. Change of ratio of isoforms of myosin heavy chains

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Diseases of the human cardiovascular system are the main cause of death in developed countries. Therefore, searching for new risk factors thereof is of particular interest. Upon comparing epidemiological data with data of transcriptome of cardiomyocytes and comparative physiology of vertebrate ontogenesis, we have come to the conclusion that one such factor may be gastroenteritis. This disease includes at once several stimuli able to cause functional and metabolic alterations in the heart: tachycardia, hormonal and ionic misbalance, and outflow of resources from the cardiovascular system. Using the model of rat neonatal gastroenteritis caused by the widespread human and animal enteropathogen Cryptosporidium parvum (Apicomplexa, Sporozoa), we studied the change of expression of α- and β-myosin heavy chains after the developed cryptosporidiosis. Online data obtained by methods of immunocytochemistry, quantitative morphometry, and polymerase chain reaction not only have confirmed our suggestion, but also have shown that moderate 4-day-long cryptosporidiosis is sufficient for producing a significant (1.7- to 4.5-fold) shift in the ratio of myosin isoforms toward the β-isoform beta at the level of mRNA and at the level of protein (2.5–6 times). The reciprocity of the changes, as well as their clear similarity at the level of mRNA and of protein, indicates that the cryptosporidial gastroenteritis involves all the main chains of a complex network of regulation of expression of the myosin heavy chains. A shift of the ratio of myosin isoforms toward the β-isoform that has an ATPase activity several times lower than the α-isoform is the commonly accepted indicator of human heart failure; therefore, the cryptosporidial gastroenteritis can be considered a novel risk factor for decrease of the heart’s contractile ability. Our data may be of interest for clinical and preventive medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anatskaya, O.V. and Vinogradov, A.E., Polyploidy: Significance for Cardiomyocyte Function and Heart Aerobic Capacity, Tsitologiia, 2004, vol. 46, no. 2, pp. 105–114.

    Google Scholar 

  • Anatskaya, O.V. and Vinogradov, A.E., Genome Multiplication as Adaptation to Tissue Survival: Evidence from gene Expression in Mammalian Heart and Liver, Genomics, 2007, vol. 89, pp. 70–80.

    Article  PubMed  CAS  Google Scholar 

  • Anatskaya, O.V. and Vinogradov, A.E., Heart and Liver as Developmental Bottlenecks of Mammal Design: Evidence from cell Polyploidization, Biol. J. Linn. Soc., 2004, vol. 83, pp. 175–186.

    Article  Google Scholar 

  • Anatskaya, O.V. and Vinogradov, A.E., Myocyte Ploidy in Heart Chambers of Birds with Different Locomotor Activity, J. Exp. Zool., 2002, vol. 293, pp. 427–441.

    Article  PubMed  Google Scholar 

  • Anatskaya, O.V., and Vinogradov, A.E., Somatic Polyploidy Promotes Cell Function under Stress and Energy Depletion: Evidence from Tissue-Specific Mammal Transcriptome, Funct. Integr. Genomics, 2010, vol. 10, pp. 433–446.

    Article  PubMed  CAS  Google Scholar 

  • Anatskaya, O.V., Sidorenko, N.V., Beyer, T.V., and Vinogradov, A.E., Neonatal Gastroenteritis Triggers Long-Term Cardiomyocyte Atrophy, Remodeling and Irreversible Hyperpolyploidization, Kardiologiya, 2010, vol. 10, no. 12, pp. 35–44.

    Google Scholar 

  • Anatskaya, O.V., Sidorenko, N.V., Beyer, T.V., and Vinogradov, A.E., Neonatal Cardiomyocyte Ploidy Reveals Critical Windows of Heart Development, Int. J. Cardiol., 2010, vol. 141, pp. 81–91.

    Article  PubMed  Google Scholar 

  • Anatskaya, O.V., Sidorenko, N.V., Vinogradov, A.E., and Beyer, T.V., Impact of Neonatal Cryptosporidial Gastroenteritis on Epigenetic Programming of rat Hepatocytes, Cell Biol. Int., 2007, vol. 31, pp. 420–427.

    Article  PubMed  CAS  Google Scholar 

  • Anatskaya, O.V., Vinogradov, A.E., and Kudryavtsev, B.N., Cardiomyocyte Ploidy Levels in Different Parts of the Heart of Birds, Tsitologiia, 1998, vol. 40, no. 5, pp. 359–371.

    Google Scholar 

  • Arefyeva, A.M., Mares, V., Ostádal, B., and Brodsky, W.Y., A Cytophotometric and Karyometric Study of the Cardiac Muscle Cells of Young Rats Exposed to Intermittent High Altitude Hypoxia, Physiol. Bohemoslov., 1985, vol. 34, pp. 94–96.

    PubMed  CAS  Google Scholar 

  • Arrowood, M.J. and Sterling, C.R., Isolation of Cryptosporidium Oocysts and Sporozoites Using Discontinuous Sucrose and Isopycnic Percoll Gradients, J. Parasitol., 1987, vol. 73, pp. 314–319.

    Article  PubMed  CAS  Google Scholar 

  • Auckland, L.M., Lambert, S.J., and Cummins, P., Cardiac Myosin Light and Heavy Chain Isotypes in Tetralogy of Fallot, Cardiovasc. Res., 1986, vol. 11, pp. 828–836.

    Article  Google Scholar 

  • Barbato, J.C., Lee, S.J., Koch, L.G., and Cicila, G.T., Myocardial Function in Rat Genetic Models of Low and High Aerobic Running Capacity, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, vol. 282, pp. R721–726.

    PubMed  CAS  Google Scholar 

  • Barker, D.J., Human Growth and Cardiovascular Disease, Nestle Nutr. Workshop Ser. Pediatr. Program, 2008, vol. 61, pp. 21–38.

    Article  PubMed  Google Scholar 

  • Beltrami, C.A., Di Loreto, C., Finato, N., and Yan, S.M., DNA Content in End-Stage Heart Failure, Adv. Clin. Path., 1997, vol. 1, pp. 59–73.

    PubMed  Google Scholar 

  • Bensley, J.G., Stacy, V.K, De Matteo, R., Harding, R., and Black, M.J., Cardiac Remodelling as a Result of Pre-Term Birth: Implications for Future Cardiovascular Disease, Eur. Heart., 2010, vol. J 31, pp. 2058–2066.

    Article  Google Scholar 

  • Blum, A., Shalabi, R., Brofman, T., and Shajrawi, I., Cardiac Manifestations of Ulcerative Colitis, Isr. Med. Assoc., 2009, vol. J 11, pp. 764–765.

    Google Scholar 

  • Bustin, S.A., Benes, V., Nolan, T., and Pfaffl, M.W., Quantitative Real-Time RT-PCR-A Perspective, J. Mol. Endocrinol., 2005, vol. 34, pp. 597–601.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski, C. and Sacchi, N., Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction, Anal. Biochem., 1987, vol. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Armon, M., Visochek, L., Rozensal, D., Kalal, A., Geistrikh, I., Klein, R., Bendetz-Nezer, S., Yao, Z., and Seger, R., DNA-Independent PARP-1 Activation by Phosphorylated ERK2 Increases Elk1 Activity: A Link to Histone Acetylation, Mol. Cell., 2007, vol. 25, pp. 297–308.

    Article  PubMed  CAS  Google Scholar 

  • Danzi, S., Klein, S., and Klein, I., Differential Regulation of the Myosin Heavy Chain Genes Alpha and Beta in Rat Atria and Ventricles: Role of Antisense RNA, Thyroid, 2008, vol. 18, pp. 761–768.

    Article  PubMed  CAS  Google Scholar 

  • de, Groot, I.J., Lamers, W.H., and Moorman, A.F., Isomyosin Expression Patterns during Rat Heart Morphogenesis: an Immunohistochemical Study, Anat. Rec., 1989, vol. 224, pp. 365–373.

    Article  PubMed  Google Scholar 

  • Erokhina, I.L., Selivanova, G.V., Vlasova, T.D., and Emel’yanova, O.I., Correlation Between the Level of Polyploidy and Hypertrophy and Degree of Human Atrial Cardiomyocyte Damage in Certain Congenital and Acquired Heart Pathologies, Tsitologiia, 1997, vol. 39, no. 10, pp. 889–899.

    Google Scholar 

  • Erokhina, I.L., Selivanova, G.V., Vlasova, T.D., Emel’yanova, O.I. and Soroka, V.V., Cytophotometric, Morphometric and Electron Microscopic Studies of the Cardiomyocytes of the Human Atrium in Ischemic Heart Disease, Tsitologiia, 1995, vol. 37, no. 4, pp. 291–297.

    Google Scholar 

  • Erokhina, I.L., Selivanova, G.V., Vlasova, T.D., Komarova, N.I., Emeljanova, O.I., and Soroka, V.V., Ultrastructure and Biosynthetic Activity of Polyploid Atrial Myocytes in Patients with Mitral Valve Disease, Acta Histochem., 1992, suppl. 42, pp. 293–299.

  • Feinberg, A.P. and Irizarry, R.A., Evolution in Health and Medicine Sackler Colloquium: Stochastic Epigenetic Variation as a Driving Force of Development, Evolutionary Adaptation, and Disease, Proc. Natl. Acad. Sci. USA, 2010, vol. 107,suppl. 1, pp. 1757–1764.

    Article  PubMed  CAS  Google Scholar 

  • Finch, C.E. and Crimmins, E.M., Inflammatory Exposure and Historical Changes in Human Life-Spans, Science, 2004, vol. 305, pp. 1736–1739.

    Article  PubMed  CAS  Google Scholar 

  • Finch, C.E., Evolution in Health and Medicine Sackler Colloquium: Evolution of the Human Lifespan and Diseases of Aging: Roles of Infection, Inflammation, and Nutrition, Proc. Natl. Acad. Sci. USA, 2010, vol. 107,suppl. 1, pp. 1718–1724.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, M.P., Factors Controlling Cardiac Myosin-isoform Shift during Hypertrophy and Heart Failure, J. Mol. Cell. Cardiol., 2007, vol. 43, pp. 388–403.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, F., Jiang, W., Bodell, P.W., Qin, A.X., and Baldwin, K.M., Cardiac Myosin Heavy Chain Gene Regulation by Thyroid Hormone Involves Altered Histone Modifications, Am. J. Physiol. Heart Circ. Physiol., 2010, vol. 299, pp. H1968–H1980.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, F., Qin, A.X., Bodell, P.W., Jiang, W., Giger, J.M., and Baldwin, K.M., Intergenic Transcription and Developmental Regulation of Cardiac Myosin Heavy Chain Genes, Am. J. Physiol. Heart. Circ. Physiol., 2008, vol. 294, pp. H29–H40.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, F., Qin, A.X., Bodell, P.W., Zhang, L.Y., Guo, H., Giger, J.M., and Baldwin, K.M., Regulation of Antisense RNA Expression during Cardiac MHC Gene Switching in Response to Pressure Overload, Am. J. Physiol. Heart. Cir. Physiol., 2006, vol. 290, pp. H2351–H2361.

    Article  CAS  Google Scholar 

  • Hang, C.T., Yang, J., Han, P., Cheng, H.L., Shang, C., Ashley, E., Zhou, B., and Chang, C.P., Chromatin Regulation by Brg1 Underlies Heart Muscle Development and Disease, Nature, 2010, vol. 466, pp. 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T., Sugiyama, A., and Taguchi, S., Hypoxia-Induced Adaptational Shift in MHC-Beta Isoform Expression in Rat Ventricles, Jpn. J. Physiol., 2005, vol. 55, pp. 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Herron, T.J., and McDonald, K.S., Small Amounts of Alpha-Myosin Heavy Chain Isoform Expression Significantly Increase Power Output of Rat Cardiac Myocyte Fragments, Circ. Res., 2002, vol. 90, pp. 1150–1152.

    Article  PubMed  CAS  Google Scholar 

  • Huggett, J., Dheda, K., Bustin, S., and Zumla, A., Realtime RT-PCR Normalisation Strategies and Considerations, Genes Immun., 2005, vol. 6, pp. 279–284.

    Article  PubMed  CAS  Google Scholar 

  • James, J., Hor, K., Moga, M.A., Martin, L.A., and Robbins, J., Effects of Myosin Heavy Chain Manipulation in Experimental Heart Failure, J. Mol. Cell. Cardiol., 2010, vol. 48, pp. 999–1006.

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma, Y., Miyauchi, T., Suzuki, T., Yuki, K., Murakoshi, N., Goto, K., and Yamaguchi, I., Enhancement of Glycolysis in Cardiomyocytes Elevates Endothelin-1 Expression through the Transcriptional Factor Hypoxia-Inducible Factor-1 Alpha, Clin. Sci. (Lond)., 2002, vol. 103, suppl. 48, pp. 210S–214S.

    CAS  Google Scholar 

  • Kharchenko, M.V., Aksyonov, A.A., Melikova, M.M., and Kornilova, E.S., Epidermal Growth Factor (EGF) Receptor Endocytosis Is Accompanied by Reorganization of Microtubule System in HeLa Cells, Cell Biol. Int., 2007, vol. 31, pp. 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Kropotov, A., Usmanova, N., Serikov, V., Zhivotovsky, B., and Tomilin, N., Mitochondrial Targeting of Human Peroxiredoxin V Protein and Regulation of PRDX5 Gene Expression by Nuclear Transcription Factors Controlling Biogenesis of Mitochondria, FEBS, 2007, vol. J 274, pp. 5804–5814.

    Google Scholar 

  • Kudryavtsev, B.N., Anatskaya, O.V., Nilova, V.K., and Komarov, S.A., Interconnection of Parameters of the Mitochondrial and Myofibrillar Apparatus of Cardiomyocytes and Ploidy and Hypertrophy in Certain Mammalian Species, Differing in Body Mass, Tsitologiia, 1997, vol. 39, no. 10, pp. 946–964.

    Google Scholar 

  • Lin, Q., Schwarz, J., Bucana, C., and Olson, E.N., Control of Mouse Cardiac Morphogenesis and Myogenesis by Transcription Factor MEF2C, Science, 1997, vol. 276, pp. 1404–1407.

    Article  PubMed  CAS  Google Scholar 

  • Lompre, A.M., Mercadier, J.J., Wisnewsky, C., Bouveret, P., Pantaloni, C., D’Albis, A., and Schwartz, K., Species- and Age-Dependent Changes in the Relative Amounts of Cardiac Myosin Isoenzymes in Mammals, Dev. Biol., 1981, vol. 84, pp. 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Lowes, B.D., Minobe, W., Abraham, W.T., Rizeq, M.N., Bohlmeyer, T.J., Quaife, R.A., Roden, R.L., Dutcher, D.L., Robertson, A.D., Voelkel, N.F., Badesch, D.B., Groves, B.M., Gilbert, E.M., and Bristow, M.R., Changes in Gene Expression in the Intact Human Heart, Downregulation of Alpha-Myosin Heavy Chain in Hypertrophied, Failing Ventricular Myocardium, J. Clin. Invest., 1997, vol. 100, pp. 2315–2324.

    Article  PubMed  CAS  Google Scholar 

  • Martynova, M.G., Antipanova, E.M., and Rumyantsev, P.P., Quantity of DNA, Sex Chromatin Bodies and Nucleoli in the Nuclei of the Muscle Cells of Normal and Hypertrophied Human Atria, Tsitologiia, 1983, vol. 25, no. 6, pp. 614–619.

    PubMed  CAS  Google Scholar 

  • Matveev, I.V., Differential Gene Expression in the Jellyfish Aurelia aurita, Tsitologiia, 2005, vol. 47, no. 5, pp. 431–435.

    PubMed  CAS  Google Scholar 

  • Matveev, I.V., Shaposhnikova, T.G., and Podgornaya, O.I., A Novel Aurelia aurita Protein Mesoglein Contains DSL and ZP Domains, Gene, 2007, vol. 399, pp. 20–25.

    Article  PubMed  CAS  Google Scholar 

  • Meckert, P.C., Rivello, H.G., Vigliano, C., González, P., Favaloro, R., and Laguens, R., Endomitosis and Polyploidization of Myocardial Cells in the Periphery of Human Acute Myocardial Infarction, Cardiovasc. Res., 2005, vol. 67, pp. 116–123.

    Article  PubMed  CAS  Google Scholar 

  • Meerson, F.Z. and Kapelko, V.I., The Significance of the Interrelationship between the Intensity of the Contractile State and the Velocity of Relaxation in Adapting Cardiac Muscle to Function at High Work Loads, J. Mol. Cell. Cardiol., 1975, vol. 7, pp. 793–806.

    Article  PubMed  CAS  Google Scholar 

  • Milting, H., Thies, W.R., Breymann, T., Léger, J., Léger, J.J., Meyer, H., Körfer, R., and Jockusch, H., Coexpression of Alpha and Beta Myosin Heavy-Chain Isoforms in Atria of Neonates and Infants with Congenital Heart Disease, Basic. Res. Cardiol., 1993, vol. 88, pp. 371–377.

    PubMed  CAS  Google Scholar 

  • Miyata, S., Minobe, W., Bristow, M.R., and Leinwand, L.A., Myosin Heavy Chain Isoform Expression in the Failing and Nonfailing Human Heart, Circ. Res., 2000, vol. 86, pp. 386–390.

    PubMed  CAS  Google Scholar 

  • Morkin, E., Control of Cardiac Myosin Heavy Chain Gene Expression, Microsc. Res. Tech., 2000, vol. 50, pp. 522–531.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, K., Minobe, W., Roden, R., Bristow, M.R., and Leinwand, L.A., Myosin Heavy Chain Gene Expression in Human Heart Failure, J. Clin. Invest., 1997, vol. 100, pp. 2362–2370.

    Article  PubMed  CAS  Google Scholar 

  • Narolska, N.A., Eiras, S., van Loon, R.B., Boontje, N.M., Zaremba, R., Spiegelen Berg, S.R., Stooker, W., Huybregts, M.A., Visser, F.C., van der Velden, J., and Stienen, G.J., Myosin Heavy Chain Composition and the Economy of Contraction in Healthy and Diseased Human Myocardium, J. Muscle. Res. Cell. Motil., 2005, vol. 26, pp. 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Nesse, R.M., Bergstrom, C.T., Ellison, P.T., Flier, J.S., Gluckman, P., Govindaraju, D.R., Niethammer, D., Omenn, G.S., Perlman, R.L., Schwartz, M.D., Thomas, M.G., Stearns, S.C., and Valle, D., Evolution in Health and Medicine Sackler Colloquium: Making Evolutionary Biology a Basic Science for Medicine, Proc. Natl. Acad. Sci. USA 107. Suppl., 2010, vol. 1, pp. 1800–1807.

    Article  Google Scholar 

  • Ojamaa, K., Petrie, J.F., Balkman, C., Hong, C., and Klein, I., Posttranscriptional Modification of Myosin Heavy-Chain Gene Expression in the Hypertrophied Rat Myocardium, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 3468–3472.

    Article  PubMed  CAS  Google Scholar 

  • Pandya, K., Cowhig, J., Brackhan, J., Kim, H.S., Hagaman, J., Rojas, M., Carter, C.W.Jr, Mao, L., Rockman, H.A., Maeda, N., and Smithies, O., Discordant On/Off Switching of Gene Expression in Myocytes during Cardiac Hypertrophy in vivo, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 13063–13068.

    Article  PubMed  CAS  Google Scholar 

  • Pandya, K., Kim, H.S., and Smithies, O., Fibrosis, not Cell Size, Delineates Beta-Myosin Heavy Chain Reexpression during Cardiac Hypertrophy and Normal Aging in vivo, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 16864–16869.

    Article  PubMed  CAS  Google Scholar 

  • Patten, M., Krämer, E., Bünemann, J., Wenck, C., Thoenes, M., Wieland, T., and Long, C., Endotoxin and Cytokines Alter Contractile Protein Expression in Cardiac Myocytes in vivo, Pflugers Arch., 2001, vol. 442, pp. 920–927.

    Article  PubMed  CAS  Google Scholar 

  • Perhonen, M., Sharp, W.W., and Russell, B., Microtubules Are Needed for Dispersal of Alpha-Myosin Heavy Chain mRNA in Rat Neonatal Cardiac Myocytes, J. Mol. Cell. Cardiol., 1998, vol. 30, pp. 1713–1722.

    Article  PubMed  CAS  Google Scholar 

  • Razeghi, P., Essop, M.F., Huss, J.M., Abbasi, S., Manga, N., and Taegtmeyer, H., Hypoxia-Induced Switches of Myosin Heavy Chain Iso-Gene Expression in Rat Heart, Biochem. Biophys. Res. Commun., 2003, vol. 303, pp. 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  • Rimbaud, S., Sanchez, H., Garnier, A., Fortin, D., Bigard, X., Veksler, V., and Ventura-Clapier, R., Stimulus Specific Changes of Energy Metabolism in Hypertrophied Heart, J. Mol. Cell. Cardiol., 2009, vol. 46, pp. 952–959.

    Article  PubMed  CAS  Google Scholar 

  • Rumyantsev, P.P., Interrelations of the Proliferation and Differentiation Processes during Cardiac Myogenesis and Regeneration, Int. Rev. Cytol., 1977, vol. 51, pp. 186–227.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning. A laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory, 1989.

    Google Scholar 

  • Schmittgen, T.D. and Livak, K.J., Analyzing Real-Time PCR Data by the Comparative C(T) Method, Nat Protoc., 2008, vol. 3, pp. 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  • Sepulveda, J.L., Belaguli, N., Nigam, V., Chen, C.Y., Nemer, M., and Schwartz, R.J., GATA-4 and Nkx-2.5 Coactivate Nkx-2 DNA Binding Targets: Role for Regulating Early Cardiac Gene Expression, Mol. Cell. Biol., 1998, vol. 18, pp. 3405–3415.

    PubMed  CAS  Google Scholar 

  • Sharma, S., Razeghi, P., Shakir, A., Keneson, B.J., 2nd, Clubb, F., and Taegtmeyer, H., Regional Heterogeneity in Gene Expression Profiles: A Transcript Analysis in Human and Rat Heart, Cardiology, 2003, vol. 100, pp. 73–79.

    Article  PubMed  CAS  Google Scholar 

  • Shlyakhto, E.V., Bokeriya, L.A., Rybakova, M.G., Semernin, E.N., Selivanova, G.V., Vlasova, T.D., Borisov, K.V., Parfenov, V.N., and Gudkova, A.Ya., Cellular Aspects of Hypertrophic Cardiomyopathy Pathogenesis: the Role of Cardiomyocyte Polyploidy and Activation of the Proliferating Cell Nuclear Antigen in the Myocardium, Tsitologiia, 2007, vol. 49, no. 10, pp. 817–824.

    Google Scholar 

  • Sidorenko, N.V., Filimonov, N.Yu., Anatskaya, O.V., Svezhova, N.V., and Beyer, T.V., Cell Response of Rat Liver Parenchyma to the Infection by the Intestinal Protozoan Pathogen Cryptosporidium parvum (Sporozoa, Coccidia), Tsitologiia, 2004, vol. 46, no. 2, pp. 114–125.

    PubMed  CAS  Google Scholar 

  • Sieck, G.C., and Regnier, M., Invited Review: Plasticity and Energetic Demands of Contraction in Skeletal and Cardiac Muscle, J. Appl. Physiol., 2001, vol. 90, pp. 1158–1164.

    PubMed  CAS  Google Scholar 

  • Stelzer, J.E., Norman, H.S., Chen, P.P., Patel, J.R., and Moss, R.L., Transmural Variation in Myosin Heavy Chain Isoform Expression Modulates the Timing of Myocardial Force Generation in Porcine Left Ventricle, J. Physiol., 2008, vol. 586, pp. 5203–52014.

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan, N.R., Pillai, V.B., and Gupta, M.P., Emerging Roles of SIRT1 Deacetylase in Regulating Cardiomyocyte Survival and Hypertrophy, J. Mol. Cell. Cardiol., 2011 (in press).

  • Suzuki, T., Palmer, B.M., James, J., Wang, Y., Chen, Z., VanBuren, P., Maughan, D.W., Robbins, J., and LeWinter, M.M., Effects of Cardiac Myosin Isoform Variation on Myofilament Function and Crossbridge Kinetics in Transgenic Rabbits, Circ. Heart. Fail., 2009, vol. 2, pp. 334–341.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, T.A., Kuzman, J.A., Anderson, B.E., Andersen, S.M., Schlenker, E.H., Holder, M.S., and Gerdes, A.M., Thyroid Hormones Induce Unique and Potentially Beneficial Changes in Cardiac Myocyte Shape in Hypertensive Rats near Heart Failure, Am. J. Physiol. Heart. Circ. Physiol., 2005, vol. 288, pp. H2118–H2122.

    Article  PubMed  CAS  Google Scholar 

  • van, Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., and Olson, E.N., Control of Stress-Dependent Cardiac Growth and Gene Expression by a Micro RNA, Science, 2007, vol. 316, pp. 575–579.

    Article  PubMed  Google Scholar 

  • Vliegen, H.W., Eulderink, F., Bruschke, A.V., van der Laarse, A., and Cornelisse, C., J., Polyploidy of Myocyte Nuclei in Pressure Overloaded Human Hearts: A Flow Cytometric Study in Left and Right Ventricular Myocardium, Am. J. Cardiovasc. Pathol., 1995, vol. 5, pp. 27–31.

    PubMed  CAS  Google Scholar 

  • Waldman, E., Tzipori, S., and Forsyth, J.R., Separation of Cryptosporidium Species Oocysts from Feces by Using a Percoll Discontinuous Density Gradient, J. Clin. Microbiol., 1986, vol. 23, pp. 199–200.

    PubMed  CAS  Google Scholar 

  • Zak, R., Contractile Function as a Determinant of Muscle Growth, Cell. Muscle Motil., 1981, vol. 1, pp. 1–32.

    CAS  Google Scholar 

  • Zu, S., X., Li, J.F., Barrett, L.J., Fayer, R., Shu, S.Y., McAuliffe, J.F., Roche, J.K., and Guerrant, R.L., Seroepidemiologic Study of Cryptosporidium Infection in Children from Rural Communities of Anhui, China and Fortaleza, Brazil. Am. J. Trop. Med. Hyg., 1994, vol. 51, pp. 1–10.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Anatskaya.

Additional information

Original Russian Text © O.V. Anatskaya, I.V. Matveev, N.V. Sidorenko, M.V. Kharchenko, A.V. Kropotov, A.E. Vinogravov, 2011, published in Tsitologiya, 2011, Vol. 53, No. 11, pp. 848–858.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anatskaya, O.V., Matveev, I.V., Sidorenko, N.V. et al. Remodeling of rat cardiomyocytes after neonatal cryptosporidiosis. I. Change of ratio of isoforms of myosin heavy chains. Cell Tiss. Biol. 6, 40–51 (2012). https://doi.org/10.1134/S1990519X12010026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X12010026

Keywords

Navigation