Advertisement

Cell and Tissue Biology

, Volume 5, Issue 6, pp 612–618 | Cite as

Study of the vesicular cycle in nerve structures in somatic muscle of earthworm (Lumbricus terrestris)

  • M. E. Volkov
  • A. M. Petrov
  • E. M. Volkov
  • A. L. Zefirov
Article

Abstract

In the muscle wall of the earthworm Lumbricus terrestris, with the aid of fluorescent endocytotic dyes FM1-43, FM2-10, and FM4-64, there are revealed fluorescent spots 1–2 μm in diameter that represent clusters of “synaptic boutons.” Application takes place onto ganglia of the abdominal nerve chain of the Dil membrane probe capable of translocation by axoplasmic transport; the subsequent (next day) staining of nerve structures with the endocytotic marker FM4-64 showed the complete superposition of fluorescence of these dyes fluorescing in different specter areas. The fluorescent marker DiBAC4(3) revealed an enhancement of fluorescence of nerve elements with increase of K+ concentration in the extracellular medium. Use of FM2-10 showed that, the higher the K+ content in solution and, accordingly, the nerve cell depolarization, the faster the release of the marker and, on the contrary, the slower the process in the absence of K+ in the medium. In the Ca2+-free solution and in the presence of the Ca2+ chelator BAPTA or BAPTA-AM, there uptake and release of FM2-10 are blocked, but only after preliminary 40-min incubation in such solution. In clusters of synaptic boutons, exo- and endocytosis processes take place that are also preserved under conditions of rest. This vesicular cycle depends on the membrane potential of nerve structures and on the content of K+ and Ca2+ in the medium, the calcium sensor working most likely by the “all or nothing” principle.

Keywords

earthworm fluorescent markers “synaptic boutons,” vesicular cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betz, W.J., and Bewick, G.C., Optical Monitoring of Transmitter Release and Synaptic Vesicle Recycling at the Frog Neuromuscular Junction, J. Physiol. (London), 1993, vol. 460, pp. 287–309.Google Scholar
  2. Fernandez-de-Miguel, F. and Drapeau, P., Synapse Formation and Function: Insights from Identified Leech Neurons in Culture, J. Neurobiology, 1993, vol. 27, pp. 367–378.CrossRefGoogle Scholar
  3. Farnesi, R.M., and Vagnetti, D., The Fine Structure of the Myoneural Junctions in the Body Wall Muscles in Branchiobdeella pentodanta Whit. (Annelida, Oligochetta), Anatomy Res., 1975, vol. 182, pp. 91–101.CrossRefGoogle Scholar
  4. Mennerick, S., Chisari, M., Shu, H., Taylor, A., Vasek, M., Eisenman, L., and Zorumski, Ch., Diverse Voltage-Sensitive Dyes Modulate GABAA Receptor Function, J. Neurosci., 2010, vol. 30, pp. 2871–2879.PubMedCrossRefGoogle Scholar
  5. Mizutani, K., Shimoi, T., Kitamura, Y., Ogawa, H., and Oka, K., Identification of Two Types of Synaptic Activity in the Earthworm Nervous System during Locomotion, Neuroscience, 2003, vol. 121, pp. 473–478.PubMedCrossRefGoogle Scholar
  6. Nguen, S., Lieven, Ch., and Levin, L., Simultaneous Labeling of Projecting Neurons and Apoptotic State, J. Neuroscience Methods., 2007, vol. 161, pp. 281–284.CrossRefGoogle Scholar
  7. Petrov, A.M., Giniatullin, A.R., Sitdikova, G.F., and Zefirov, A.L., The Role of cGMP-Dependent Signaling Pathway in Synaptic Vesicle Cycle at the frog Motor Nerve Terminals, J. Neurosci., 2008, vol. 28, pp. 13216–13222.PubMedCrossRefGoogle Scholar
  8. Richards, D.A., Guatimosim, C., and Betz, W.J., Two Endocytic Recycling Routes Selectively Fill Two Vesicle Pools in Frog Motor Nerve Terminal, Neuron, 2000, vol. 27, pp. 551–559.PubMedCrossRefGoogle Scholar
  9. Rosenbluth, J., Myoneural Junctions of Two Ultrastractural Distinct Types in the Earthworm Body Wall Muscle, J. Cell Biol., 1972, vol. 54, pp. 566–579.PubMedCrossRefGoogle Scholar
  10. Shimizu, R., Oka, K., Ogawa, H., Suzuki, K., Saito, J., Mizutani, K., and Tanishita, K., Optical Monitoring of the Neuronal Activity Evoked by Mechanical Stimulation in the Earthworm Nervous System with a Fluorescent Dye, FM1-43, Neurosci. Lett., 1999, vol. 268, pp. 159–162.PubMedCrossRefGoogle Scholar
  11. Volkov, E.M., Nurullin, L.F., and Nikol’skii, E.E., Influence of Sodium Pump and Na(+), K(+), CL(-)-Cotransport on the Resting Membrane Potential of Somatic Muscle Cells of the Earthworm Lumbricus terrestris, Ross. Fiziol. Zh. im. I.M Sechenova., 2001, vol. 87, no. 9, pp. 1153–1160.PubMedGoogle Scholar
  12. Volkov, E.M., Nurullin, L.F., Nikolsky, E.E., and Vyskocil, F., Miniature Excitatory Synaptic Ion Currents in the Earthworm Lumbricus terrestris Body Wall Muscles, Physiol. Res., 2007, vol. 56, pp. 655–658.PubMedGoogle Scholar
  13. Volkov, E.M., Nurullin, L.F., Svandova, L., Nikolsky, E.E., and Vyskocyl, F., Participation of Electrogenic Na/K-ATPase in the Membrane Potential of Earthworm Body Wall Muscle, Physiol. Res., 2000, vol. 40, pp. 481–484.Google Scholar
  14. Zefirov, A.L., Abdrakhmanov, M.M., Mukhamedyarov, M.A., and Grigoryev, P.N., The Role of Intra and Extracellular Calcium in Recycling of Synaptic Vesicle at Frog Motor Nerve Endings, Neuroscience, 2006, vol. 143, pp. 905–910.PubMedCrossRefGoogle Scholar
  15. Zefirov, A.L., Grigor’ev, P.N., Petrov, A.M., Minlebaev, M.G., and Sitdikova, G.F., Analysis of Living Motor Nerve Ending of a Frog by Endocytotic Fluorescent Marker FM 1-43, Tsitologiia, 2003, vol. 45, no. 12, pp. 1163–117.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. E. Volkov
    • 1
  • A. M. Petrov
    • 1
  • E. M. Volkov
    • 1
  • A. L. Zefirov
    • 1
  1. 1.Kazan Medical State UniversityKazan, TatarstanRussia

Personalised recommendations