Cell and Tissue Biology

, 5:463 | Cite as

Reduced tumorigenicity of murine hepatoma cells after treatment with antioxidants and melatonin

  • N. A. Filatova
  • K. M. Kirpichnikova
  • N. D. Aksenov
  • E. A. Vakhromova
  • I. A. Gamaley


The tumor growth of murine hepatoma cells MH22a treated with N-acetylcysteine (NAC, 10 mM) and alpha-lipoic acid (ALA, 1.25 mM) antioxidants or hormone melatonin (1 μM) and transplanted into syngeneic (C3HA) mice has been studied. NAC, ALA, or melatonin treatment for 20 h reduced the tumor development and the number of dead mice. Melatonin produced the most pronounced effect. Tumors appeared in 10 days in 100% of control mice injected with untreated cells; the injection of cells pretreated by NAC or ALA generated tumors in 40 and 53% of mice, respectively. Cells pretreated with melatonin produced tumors 18–20 days after injection; 67% of control mice died in 36 days (the observation period). The mortality rate was 20 and 53% if the injected cells were treated with NAC or ALA, respectively. No mice died during this period with melatonin-pretreated cells. We found that treatment with antioxidants delayed (NAC) or completely inhibited (ALA) the progression of the cell cycle of murine hepatoma cells. After the antioxidant removal, the cell cycle was restored. Melatonin did not affect the cell cycle phase distribution. We conclude that there is no direct correlation between the loss of tumorigenic properties and the altered proliferative activity of hepatoma cells. Different mechanisms of antioxidants and melatonin action that underlie the transient normalization of the tumor phenotype are discussed.


tumorigenic cells MH22a murine hepatoma N-acetylcysteine alpha-lipoic acid melatonin cell cycle 

Abbreviations used


alpha-lipoic acid




  1. Acua-Castroviejo, D., Escames, G., Carozo, A., Leon, J., Khaldy, H., and Reiter, R.J., Melatonin, Mitochondrial Homeostasis and Mitochondrial-Related Diseases, Curr. Topics Med. Chem., 2002, vol. 2, pp. 133–152.CrossRefGoogle Scholar
  2. Aluigi, M.G., De Flora, S., D’Agostini, F., Albini, A., and Fassina, G., Antiapoptotic and Antigenotoxic Effects of N-Acetylcysteine in Human Cells of Endothelial Origin, Anticancer Res., 2000, vol. 20, pp. 3183–3187.PubMedGoogle Scholar
  3. Anisimov, S.V., and Popovic, N., Genetic Aspects of Melatonin Biology, Rev. Neurosci., 2004, vol. 15, pp. 209–230.PubMedCrossRefGoogle Scholar
  4. Anisimov, V.N., Popovich, I.G., and Zabezhinskii, M.A., Effect of melatonin on aging, in Melatonin v norme i patologii (Melatonin in Norm and Pathology) Moscow: Medpraktika, 2004, pp. 223–232.Google Scholar
  5. Blask, D.E., Dauchy, R.T., Sauer, L.A., and Krause, J.A., Melatonin Uptake and Growth Prevention in Rat Hepatoma 7288CTC in Response to Dietary Melatonin: Melatonin Receptor-Mediated Inhibition of Tumor Linoleic Acid Metabolism to the Growth Signaling Molecule 13-Hydroxyoctadecadienoic Acid and the Potential Role of Phytomelatonin, Carcinogenesis, 2004, vol. 25, pp. 951–960.PubMedCrossRefGoogle Scholar
  6. Blask, D.E., Sauer, L.A., and Dauchy, R.T., Melatonin as a Chronobiotic/Anticancer Agent: Cellular, Biochemical, and Molecular Mechanisms of Action and Their Implications for Circadian-Based Cancer Therapy, Curr. Top. Med. Chem., 2002, vol. 2, pp. 113–132.PubMedCrossRefGoogle Scholar
  7. Dean, P.N., Methods of data Analysis in Flow Cytometry, in Flow Cytometry-Instrumentation and Data Analysis, New York: Academic Press, 1985, pp. 114–124.Google Scholar
  8. Dubocovich, M.L., Melatonin Receptors: Role on Sleep and Circadian Rhythm Regulation, Sleep Med., 2007, vol. 3,suppl. 8, pp. 34–42.CrossRefGoogle Scholar
  9. Efremova, T.N., Kirpichnikova, K.M., Khaitlina, S.Yu., and Gamaley, I.A., Antioxidants-Induced Rearrangements of Actin Cytoskeleton in 3T3 and 3T3-SV40 Fibroblasts, Tsitologiia, 2004, vol. 46, no. 5, pp. 395–403.PubMedGoogle Scholar
  10. Ferrari, G., Yan, C.Y., and Greene, L.A., N-Acetylcysteine (D- and L-Stereoisomers) Prevents Apoptotic Death of Neuronal Cells, J. Neurosci., 1995, vol. 15, pp. 2857–2866.PubMedGoogle Scholar
  11. Filatova, N.A., Kirpichnikova, K.M, and Gamaley, I.A., N-Acetylcysteine Reduces Transformed 3T3-SV40 Fibroblast Sensitivity to Lysis by Natural Killer Cells, Tsitologiia, 2006, vol. 48, no. 5, pp. 438–442.PubMedGoogle Scholar
  12. Filatova, N.A., Kirpichnikova, K.M., and Gamaley, I.A., Reorganization of Actin Cytoskeleton in 3T3-SV40 Cells and Their Sensitivity to Lysis by Natural Killer Cells, Tsitologiia, 2008, vol. 50, no. 3, pp. 261–268.PubMedGoogle Scholar
  13. Filatova, N.A., Kirpichnikova, K.M., Vakhromova, E.A., and Gamaley, I.A., Effect of Alpha-Lipoic Acid on the Sensitivity of Transformed Fibroblasts to Lysis by Natural Killer Cells. Comparison with NAC Action, Tsitologiia, 2009, vol. 51, no. 5, pp. 398–402.PubMedGoogle Scholar
  14. Finkel, T., and Holbrook, N.J., Oxidants, Oxidative Stress and the Biology of Ageing, Nature, 2000, vol. 408, pp. 239–247.PubMedCrossRefGoogle Scholar
  15. Gamaley, I.A., Kirpichnikova, K.M., Vakhromova, E.A., and Filatova, N.A., N-Acetylcysteine-Induced Reduction in Susceptibility of Transformed and Embryonic Cells to Lytic Activity of Natural Killer Cells, Tsitologiia, 2010b, vol. 52, no. 7, pp. 555–561.Google Scholar
  16. Gamaleyi, I.A. Aksenov, N.D., Efremova, T.N., and Kirpichnikova, K.M., Effect of Agents Changing the Intracellular Level of Reactive Oxygen Species on the Cell Cycle Phase Distribution in 3T3 and 3T3SV40 Cell Lines, Tsitologiia, 2003, vol. 45, no. 1, pp. 26–33.Google Scholar
  17. Gamaley, I.A., and Klyubin, I.V., Roles of Reactive Oxygen Species: Signaling and Regulation of Cellular Functions, Int. Rev. Cytol. Vol., 1999, vol. 188 P 203–255.Google Scholar
  18. Gamaley, I.A., Voronkina, I.V. Kirpichnikova, K.M., and Filatova, N.A., Molecular and Physiological Mechanisms of Action of Antioxidants on Transformed and Embryonic Cells, in Bioantioksidant. VIII Mezhdunarodnaya konferentsiya. Tezisy dokladov (Abstracts of VIII Int. Conf. “Bioantioxidant”), Moscow: RUDN, 2010a, pp. 105–106.Google Scholar
  19. Gelshtein, V.I., Series of Transplantable Mouse Hepatomas, Tsitologiia, 1971, vol. 13, no. 1, pp. 3–14.Google Scholar
  20. Gonchar, I.V., Burova, E.B., Dorosh, V.N., Gamaley, I.A., and Nikolskii, N.N., Dependence of EGF Receptor and STAT fActor Activation on Redox of A431 Cells, Tsitologiia, 2003, vol. 45, no. 5, pp. 478–487.PubMedGoogle Scholar
  21. Han, D., Sen, C.K., Roy, S., Kobayashi, M.S., Tritschler, H.J., and Packer, L., Protection against Glutamate-Induced Cytotoxicity in C6 Glial Cells by Thiol Antioxidants, Am. J. Physiol. 1997, vol. 273, pp. R1771–R1778.PubMedGoogle Scholar
  22. Kawakami, S., Kageyama, Y., Fujii, Y., Kihara, K., and Oshima, H., Inhibitory Effect of N-Acetylcysteine on Invasion and MMP-9 Production of T24 Human Bladder Cancer Cells, Anticancer Res., 2001, vol. 21, pp. P 213–219.Google Scholar
  23. Kelly, G.S., Clinical Applications of N-Acetylcysteine, Altern. Med. Rev., 1998, vol. 3, no. 2, pp. 114–127.PubMedGoogle Scholar
  24. Khavinson, V.Kh., Yuzhakov, V.V., Kvetnoi, I.M., and Malinin, V.V., Epithalon Influence on the Growth Kinetics and Functional Morphology of Sarcoma M-1, Vopr. Onkol., 2001, vol. 47, no. 4, pp. 461–465.PubMedGoogle Scholar
  25. Kimura, H., Sawada, T., Oshima, S., Kozawa, K., Ishioka, T., and Kato, M., Toxicity and Roles of Reactive Oxygen Species, Curr. Drug Targets Inflamm. Allergy, 2005, vol. 4, pp. 489–495.PubMedCrossRefGoogle Scholar
  26. Komarov, F.I., Rapoport, S.I., Malinovskaya, N.K., and Anisimov, V.N., Eds., Melatonin v norme i patologii (Melatonin in Norm and Pathology), Moscow: Medpraktika, 2004.Google Scholar
  27. Mikhelson, V.M., and Gamaley, I.A., Telomere Shortening is the Sole Mechanism of Aging, Open Aging. J., 2008, vol. 2, pp. 30–38.Google Scholar
  28. Moini, H., Packer, L., and Saris, N.E., Antioxidant and Prooxidant Activities of Alpha-Lipoic acid and Dihydrolipoic Acid, Toxicol. Appl. Pharmacol., 2002, vol. 182, pp. 84–90.PubMedCrossRefGoogle Scholar
  29. Moretta, L., and Moretta, A., Unravelling Natural Killer Cell Function: Triggering and Inhibitory Human NK Receptors, EMBO J., 2004, vol. 23, pp. 255–259.PubMedCrossRefGoogle Scholar
  30. Munoz, A.M., Rey, P., Soto-Otero, R., Guerra, M.J., and Labandeira-Garcia, J.L., Systemic Administration of N-Acetylcysteine Protects Dopaminergic Neurons Against 6-Hydroxydopamine-Induced Degeneration, J. Neurosci Res., 2004, vol. 76, pp. 551–562.PubMedCrossRefGoogle Scholar
  31. Ostroumova, M.N., Kovalenko, I.G., and Bershtein, L.M., Possibility of Using N-Acetylcysteine in Cancer Prevention, Eksperim. Onkol., 1994, vol. 16, no. 1, pp. 96–101.Google Scholar
  32. Packer, L., Witt, E.H., and Tritschler, H.J., Alpha-Lipoic Acid as a Biological Antioxidant, Free Rad. Biol. Med., 1995, vol. 19, pp. 227–250.PubMedCrossRefGoogle Scholar
  33. Parasassi, T., Brunelli, R., Costa, G., De Spirito, M., Krasnowsk, E.K., Lundeberg, T., Pittaluga, E., and Ursini, F., Thiol Redox Transitions in Cell Signaling: a Lesson from N-Acetylcysteine, Sci. World J., 2010, vol. 10, pp. 1192–1202.Google Scholar
  34. Rahimi, R., Nikfar, S., Larijani, B., and Abdollahi, M., A Review on the Role of Antioxidants in the Management of Diabetes and its Complications, Biomed. Pharmacother., 2005, vol. 59, pp. 365–373.PubMedCrossRefGoogle Scholar
  35. Reiter, R.J., Tan, D., Mayo, J.C., Sainz, R.M., Leon, J., and Czarnocki, Z., Melatonin as an Antioxidant: Biochemical Mechanisms and Pathophysiological Implications in Humans, Acta Biochim Pol., 2003, vol. 50, pp. 1129–1146.PubMedGoogle Scholar
  36. Rivabene, R., Viora, M., Matarrese, P., Rainaldi, G., D’Ambrosio, A., and Malorni, W., N-Acetylcysteine Enhances Cell Adhesion Properties of Epithelial and Lymphoid Cells, Cell Biol. Int., 1995, vol. 19, pp. 681–686.PubMedCrossRefGoogle Scholar
  37. Rodriquez, C., Mayo, J.C., Sainz, R.M., Antolin, I., Herera, F., Martin, V., and Reiter, R.J., Regulation of Antioxidant Enzymes: A Significant Role for Melatonin, J. Pineal Res., 2004, vol. 36, pp. 1–9.CrossRefGoogle Scholar
  38. Roy, S., and Packer, L., Redox Regulation of Cell Functions by Alpha-Lipoate: Biochemical and Molecular Aspects, Biofactors, 1998, vol. 8, pp. 17–21.PubMedCrossRefGoogle Scholar
  39. Sochman, J., N-Acetylcysteine in Acute Cardiology: 10 Years Later: What Do We Know and What Would We Like to Know? J. Am. Coll. Cardiol., 2002, vol. 39, pp. 1422–1428.PubMedCrossRefGoogle Scholar
  40. Tylicki, L., Rutkowski, B., and Härl, W.H., Antioxidants: A Possible Role in Kidney Protection, Kidney Blood Press Res., 2003, vol. 26, pp. 303–314.PubMedCrossRefGoogle Scholar
  41. Vakhromova, E.A., Polozov, Yu.S., Kirpichnikova, K.M., Aksenov, N.D., and Gamaley, I.A., Effect of alpha-Lipoic Acid on Fibroblasts 3T3 and 3T3-SV40. Comparison with N-Acetylcysteine Action, Tsitologiia, 2009, vol. 51, no. 12, pp. 971–977.PubMedGoogle Scholar
  42. Voronkina, I.V., Kirpichnikova, K.M., Smagina, L.V., and Gamaleyi, I.A., Changes in Matrix Metalloproteinases Activities in Normal and Transformed Mouse Fibroblasts under Effect of Antioxidants, Tsitologiia, 2008, vol. 2008 50, no. 10, pp. 879–883.Google Scholar
  43. Whiteman, M., Tritschler, H., and Halliwell, B., Protection Against Peroxynitrite-Dependent Tyrosine Nitration and 1-Antiproteinase Inactivation by Oxidized and Reduced Lipoic Acid, FEBS Lett., 1996, vol. 379, pp. 74–76.PubMedCrossRefGoogle Scholar
  44. Zafarullah, M., Li, W.Q., Sylvester, J., and Ahmad, M., Molecular Mechanisms of N-Acetylcysteine Actions, CMLS Cell Mol. Life Sci., 2003, vol. 60, pp. 6–20.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. A. Filatova
    • 1
  • K. M. Kirpichnikova
    • 1
  • N. D. Aksenov
    • 1
  • E. A. Vakhromova
    • 1
  • I. A. Gamaley
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations