Advertisement

Cell and Tissue Biology

, Volume 4, Issue 4, pp 354–361 | Cite as

Comparative analysis of SGLT1 and GLUT2 transporters distribution in rat small-intestine enterocytes and Caco-2 cells during hexose absorption

  • N. M. Grefner
  • L. V. Gromova
  • A. A. Gruzdkov
  • Ya. Yu. Komissarchik
Article

Abstract

The distribution of SGLT1 and GLUT2 hexose transporters has been evaluated in enterocytes of an isolated loop of the small intestine and Caco-2 cell culture after absorption of hexoses at their high and low concentrations. The SGLT1 transporter was found to be located in enterocytes along the edge of the intestinal villus. The GLUT2 transporter after loading with high hexose concentrations is located in the apical part of enterocytes. In culture, Caco-2 cells form a characteristic of enterocytes microvilli and the cell junction complex. During the incubation of the culture in solutions of glucose and galactose, the absorption of these sugars from the incubation medium was observed. The SGLT1 transporter in the Caco-2 cells is located in the apical and perinuclear enterocyte parts and is organized in globules. After loading with hexoses at low concentrations, the GLUT2 transporter is in the basal cell area. The Caco-2 cell culture can serve a model for studying the transport of sugar in the intestinal epithelium.

Key words

confocal and electron microscopy enterocyte Caco-2 SGLT1 GLUT2 hexoses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blais, A., Bissonnette, P., and Berteloot, A., Common Characteristics for Na+ Dependent Sugar Transport in Caco-2 Cells and Human Fetal Colon, J. Membr. Biol., 1987, vol. 99, pp. 113–125.CrossRefPubMedGoogle Scholar
  2. Boshuizen, J.A., Reimerink, J.H.J., Korteland-Van Male, A.M., Van Ham, V.J.J., Koopmans, M.P.G., Büller, H.A., Dekker, J., and Einerhandl, A.W.C., Changes in Small Intestinal Homeostasis, Morphology, and Gene Expression During Rotavirus Infection of Infant Mice, J. Virol., 2003, vol. 77, pp. 13005–13016.CrossRefPubMedGoogle Scholar
  3. Cheeseman, Ch.I., Intestinal Hexose Absorption: Transcellular and or Paracellular Fluxes, J. Physiol., 2002, vol. 544, pp. 336–338.CrossRefPubMedGoogle Scholar
  4. Dahlqvist, A., Method for Assay of Intestinal Disaccharidases, Anal. Biochem., 1964, vol. 7, pp. 18–25.CrossRefPubMedGoogle Scholar
  5. Drozdowski, L.A. and Thomson, A.B.R., Intestinal Sugar Transport, World J. Gastroenterology, 2006, vol. 12, pp. 1657–1670.Google Scholar
  6. Ferraris, R.P., Dietary and Developmental Regulation of Intestinal Sugar Transport, Biochem. J., 2001, vol. 360, pp. 265–276.CrossRefPubMedGoogle Scholar
  7. Grefner, N.M., Gromova, L.V., Gruzdkov, A.A., Snigirevskaya, E.S., and Komissarchik, Ya.Yu., Structural-Functional Analysis of Diffusion in Glucose Absorption by Rat Small Intestine Enterocytes, Tsitologiia, 2006, vol. 48, no. 4, pp. 355–363.PubMedGoogle Scholar
  8. Gromova, L.V. and Gruzdkov, A.A., Hydrolysis-Dependent Absorption of Disaccharides in the Rat Small Intestine (Chronic Experiments and Mathematical Modeling), Gen. Physiol. Biophys., 1999, vol. 18, pp. 209–224.PubMedGoogle Scholar
  9. Gromova, L.V. and Gruzdkov, A.A., The Relative Role of Different Mechanisms of Glucose Absorption in the Small Intestine under Physiological Conditions, Ross. Fiziol. Zhurn. Im. I.M. Sechenova, 1993, vol. 79, no. 6, pp. 65–72.Google Scholar
  10. Gromova, L.V., Grefner, N.M., Gruzdkov, A.A., and Komissarchik, Ya.Yu., The Role of Facilitated Diffusion in Glucose Transport Across the Apical Membrane of Enterocytes, Ross. Fiziol. Zhurn. Im. I.M. Sechenova, 2006, vol. 92, no. 3, pp. 362–373.Google Scholar
  11. Gruzdkov, A.A. and Gromova, L.V., Mechanisms of Glucose Absorption at a High Carbohydrate Level in the Rat Small Intestine in Vivo, Ross. Fiziol. Zhurn. Im. I.M. Sechenova, 2001, vol. 87, no. 7, pp. 973–981.Google Scholar
  12. Habold, C., Foltzer-Jourdainne, C., Le Maho, Y., Lignot, J.H., and Oudart, H., Intestinal Gluconeogenesis and Glucose Transport According to Body Fuel Availability in Rats, J. Physiol., 2005, vol. 566, no. 2, pp. 575–586.CrossRefPubMedGoogle Scholar
  13. Helliwell, P.A., Richardson, M., Affeck, J.A., and Kellett, G.L., Stimulation of Fructose Transport Across the Intestinal Brush-Border Membrane by PMA Is Mediated by GLUT2 and Dynamically Regulated by Protein Kinase, C. Biochem. J., 2000, vol. 350, pp. 149–154.Google Scholar
  14. Kellett, G.L. and Brot-Laroche, E., Apical GLUT2. AMajor Pathway of Intestinal Sugar Absorption, Diabetes, 2005, vol. 54, pp. 3056–3062.CrossRefPubMedGoogle Scholar
  15. Kellett, G.L. and Helliwell, P.A., The Diffusive Component of Intestinal Glucose Absorption Is Mediated by the Glucose-Induced Recruitment of GLUT2 to Brush-Border Membrane, Biochem. J., 2000, vol. 380, pp. 155–162.CrossRefGoogle Scholar
  16. Kellett, G.L., The Facilitated Component of Intestinal Glucose Absorption, J. Physiol., 2001, vol. 531, pp. 585–595.CrossRefPubMedGoogle Scholar
  17. Khoursandi, S., Scharlau, D., Herter, P., Kuchnen, C., Martin, D., Kinne R.K.H., and Kipp, H., Different Modes of Sodium-D-Glucose Cotransporter-Mediated D-Glucose Uptake Regulation in Caco-2 Cells, Am. J. Physiol Cell Physiol., 2004, vol. 287, pp. C1041–C1047.CrossRefPubMedGoogle Scholar
  18. Kipp, H., Khoursandi, S., Scharlau, D, and Kinne, R.K.H., More Than Apical: Distribution of SGLT1 in Caco-2 Cells, Am. J. Physiol. Cell Physiol., 2003, vol. 285, pp. C737–C749.PubMedGoogle Scholar
  19. Komissarchik, Ya.Yu., Snigirevskaya, E.S., Grefner, N.M., Kever, L.V., Gruzdkov, A.A., and Gromova, L.V., Structural-Functional Analysis of the Mechanism of Glucose Absorption at High Maltose Concentrations in the Small Intestine of Rats in vivo, Tsitologiia, 2003, vol. 45, no. 5, pp. 456–465.Google Scholar
  20. Lane, J.S., Whang, E.E., Rigberg, D.A., Hines, O.J., Kwan, D., Zinner, M.J., Mcfadden, D.W., Diamond, J., and Ashley, S.W., Paracellular Glucose Transport Plays a Minor Role in the Unanesthetized Dog, Amer. J. Physiol., 1999, vol. 276, pp. G789–G794.PubMedGoogle Scholar
  21. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  22. Madara, J.L. and Pappenheimer, J.R., Structural Basis for Physiological Regulation of Paracellular Pathways in Intestinal Epithelia, J. Membr. Biol., 1987, vol. 100, pp. 149–164.CrossRefPubMedGoogle Scholar
  23. Mahraoui, L., Rodolosse, A., Barbat, A., Dussaulx, E., Zweibaum, A., Rousset, M., and Brot-Laroche, E., Presence and Differential Expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 Hexose-Transporter mRNAs in Caco-2 Cell Clones in Relation to Cell Growth and Glucose Consumption, Biochem. J., 1994, vol. 298, pp. 629–633.PubMedGoogle Scholar
  24. Mironov, A.A., Komissarchik, Ya.Yu., and Mironov, V.A., Metody elektronnoy mikroskopii v biologii i meditsine (Electron-Microscopic Methods in Biology and Medicine), St.-Peterburg: Nauka, 1994 [in Russian].Google Scholar
  25. Pappenheimer, J.R. and Reiss, K.Z., Contribution of Solvent Drag through Intercellular Junctions to Absorption of Nutrients by the Small Intestine of the Rat, J. Membr. Biol., 1987, vol. 100, pp. 123–136.CrossRefPubMedGoogle Scholar
  26. Pappenheimer, J.R., Role of Pre-Epithelial “Unstirred” Layers in Absorption of Nutrients from the Human Jejunum, J. Membr. Biol., 2001, vol. 179, no. 2, pp. 185–204.CrossRefPubMedGoogle Scholar
  27. Pinto, M., Robine-Leon, S., Appay, M.D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., and Zweibaum, A., Enterocyte-Like Differentiation and Polarization of the Human Colon Carcinoma Cell Line Caco-2 in Culture, Biol. Cell., 1983, vol. 47, pp. 323–330.Google Scholar
  28. Scott, T.A. and Melvin, E.H., The Determination of Hexoses with Anthrone, Anal. Biochem., 1953, vol. 25, pp. 1656–1658.Google Scholar
  29. Timofeeva, N.M., Iezuitova, N.N., and Gromova, L.V., The Current Concepts on the Absorption of Monosaccharides, Amino Acids and Peptides in the Mammalian Small Intestine, Usp. Fiziol. Nauk., 2000, vol. 31, no. 4, pp. 24–37.PubMedGoogle Scholar
  30. Ugolev, A.M. and Zaripov, B.Z., Methodologic Approaches to Studying Membrane Digestion and Absorption in the Small Intestine during Chronic Experiments on Rats and Certain Other Animals, Fiziol. Zhurn. SSSR Im. I.M. Sechenova, 1979, vol. 65, no, 12, pp. 1849–1853.Google Scholar
  31. Ugolev, A.M., Komissarchik, Ya.Yu., Gromova, L.V., Gruzdkov, A.A., Snigirevskaya, E.S. and Brudnaya, M.S., Structural and Functional Analysis of Glucose Absorption Mechanisms in the Rat Small Intestine in vivo, Gen. Physiol. Biophys., 1995, vol. 14, pp. 405–417.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. M. Grefner
    • 1
  • L. V. Gromova
    • 2
  • A. A. Gruzdkov
    • 2
  • Ya. Yu. Komissarchik
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations