Cell and Tissue Biology

, Volume 4, Issue 3, pp 273–279 | Cite as

Involvement of tyrosine and phosphatidylinositol kinases in oxidized glutathione and glutoxim regulation of Na+ transport in frog skin

  • A. V. Melnitskaya
  • Z. I. Krutetskaya
  • O. E. Lebedev
  • V. G. Antonov
  • S. N. Butov
Article

Abstract

The role of tyrosine and phosphatidylinositol kinases in oxidized glutathione (GSSG) and its pharmacological analogue, glutoxim, regulation of Na+ transport in Rana temporaria frog skin was investigated by the voltage-clamp technique. It was shown for the first time that the preincubation of the skin with tyrosine kinase inhibitor genistein or with two structurally distinct phosphatidylinositol kinase inhibitors, wortmannin and LY294002, significantly decreased the stimulatory effect of GSSG or glutoxim on Na+ transport. The data suggest that GSSG and glutoxim can transactivate insulin receptor in the basolateral membrane of epithelial cells and trigger the signaling cascade, which involves tyrosine and phosphatidylinositol kinases, which stimulates Na+ transport in frog skin.

Key words

Na+ transport oxidized glutathione glutoxim tyrosine kinases phosphatidylinositol kinases 

Abbreviations used

ENaC

amiloridesensitive epithelial Na+-channels

GSH

reduced glutathione

GSSG

oxidized glutathione

PI-3-kinases

phosphatidylinositol-3 kinases

PI-4-kinases

phosphatidylinositol-4-kinases

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, T. and Ogawara, H., Use and Specificity of Genistein as an Inhibitor of Protein Tyrosine Kinases, Methods Enzymol., 1991, vol. 201, pp. 362–370.CrossRefPubMedGoogle Scholar
  2. Barford, D., Flint, A.J., and Tonks, N.K., Crystal Structure of Human Protein Tyrosine Phosphatase 1B, Science, 1994, vol. 263, pp. 1397–1404.CrossRefPubMedGoogle Scholar
  3. Benos, D.J., and Stanton, B.A., Functional Domains Within the Degenerin/Epithelial Sodium Channel (Deg/Enac) Superfamily of Ion Channels, J. Physiol., 1999, vol. 520, pp. 631–644.CrossRefPubMedGoogle Scholar
  4. Bentley, P.J., Amiloride: a Potent Inhibitor of Sodium Transport Across the Toad Bladder, J. Physiol., 1968, vol. 195, pp. 317–333.PubMedGoogle Scholar
  5. Biswas, S., Chida, A.S., and Rahman, I., Redox Modifications of Protein-Thiols: Emerging Roles in Cell Signaling, Biochem. Pharmacol., 2006, vol. 71, pp. 551–564.CrossRefPubMedGoogle Scholar
  6. Boldyrev, A.A. and Bulygina, E.R., Na/K-ATPase and Oxidative Stress, Ann. NY Acad. Sci., 1997, vol. 834, pp. 666–668.CrossRefPubMedGoogle Scholar
  7. Brennan, J.P., Bardswell, S.C., Burgoyne, J.R., Fuller, W., Schroder, E., Wait, R., Begum, S., Kentish, J.C., and Eaton, P., Oxidant-Induced Activation of Type I Protein Kinase A Is Mediated by RI Subunit Inter Protein Disulfide Bond Formation, J. Biol. Chem., 2006, vol. 281, pp. 21827–21 836.CrossRefPubMedGoogle Scholar
  8. Burova, E.B., Vasilenko, K.P., Antonov, V.G., and Nikolsky, N.N., Transactivation of the Epidermal Growth Factor Receptor by Oxidized Glutathione and Its Pharmacological Analogue Glutoxim in A431 Cells, Dokl. Akad. Nauk, 2005, vol. 404, no. 1, pp. 122–124.Google Scholar
  9. Cadena, D.L. and Gill, G.N., Receptor Tyrosine Kinases, FASEB J., 1992, vol. 6, pp. 2332–2337.PubMedGoogle Scholar
  10. Cox, M. and Singer, I., Insulin-Mediated Na+ Transport in the Toad Urinary Bladder, Amer. J. Physiol., 1977, vol. 232, pp. F270–F277.PubMedGoogle Scholar
  11. Davis, M.J., Wu, X., Nurkiewicz, T.R., Kawasaki, J., Gui, P., Hill, M.A., and Wilson, E., Regulation of Ion Channels by Protein Tyrosine Phosphorylation, Amer. J. Physiol., 2001, vol. 281, pp. H1835–H1862.Google Scholar
  12. Filatova, E.I., Bylinskaya, E.N., and Alaberg, S.D., The Use of Glutoxim during Radiation Therapy of Cervical Cancer, in Tezisy III s”ezda onkologov i radiologov SNG (Proc. III Congr. Oncologists and Radiologists of the Commonwealth of Independent States), Minsk, 2004, vol. II, p. 354.Google Scholar
  13. Filomeni, G., Aquilano, K., Civitareale, P., Rotilio, G., and Ciriolo, M.R., Activation of C-jun-N-Termainal Kinase Is Required for Apoptosis Triggered by Glutathione Disulfide in Neuroblastoma Cells, Free Rad. Biol. Med., 2005, vol. 39, pp. 345–354.CrossRefPubMedGoogle Scholar
  14. Filomeni, G., Rotilio, G., and Ciriolo, M.R., Cell Signaling and Glutathione Redox System, Biochem. Pharmacol., 2002, vol. 64, pp. 1057–1064.CrossRefPubMedGoogle Scholar
  15. Firsov, D., Robert-Nicoud, M., Gruender, S., Schild, L., and Rossier, B.C., Mutational Analysis of Cysteine-Rich Domain of the Epithelium Sodium Channel (ENaC): Identification of Cysteines Essential for Channel Expression at the Cell Surface, J. Biol. Chem., 1999, vol. 274, pp. 2743–2749.CrossRefPubMedGoogle Scholar
  16. Fischer, E.H., Charbonneau, H., and Tonks, N.K., Protein Tyrosine Phospharases: a Diverse Family of Intracellular and Transmembrane Enzymes, Science, 1991, vol. 253, pp. 401–406.CrossRefPubMedGoogle Scholar
  17. Forman, J.H. and Torres, M., Reactive Oxygen Species and Cell Signaling, Amer. J. Respir. Crit. Care Med., 2002, vol. 166, pp. S4–S8.CrossRefGoogle Scholar
  18. Garant, M.J., Kole, S., Maksimova, E.M., and Bernier, M., Reversible Change in Thiol Redox Status of the Insulin Receptor β-Subunit in Intact Cells, Biochemistry, 1999, vol. 38, pp. 5896–5904.CrossRefPubMedGoogle Scholar
  19. Ghezzi, P., Regulation of Protein Function by Glutathionylation, Free Radic. Res., 2005, vol. 39, pp. 573–580.CrossRefPubMedGoogle Scholar
  20. Hagiwara, N., Tohda, H., Doi, Y., O’Brodovich, H., and Marunaca, Y., Effect Of Insulin and Tyrosine Kinase Inhibitor on Ion Transport in the Alveolar Cell of the Fetal Lung, Biochem. Biophys. Res. Commun., 1992, vol. 187, pp. 802–808.CrossRefPubMedGoogle Scholar
  21. Hayes, J.D. and McLellan, L.I., Glutathione and Glutathione-Dependent Enzymes Represent a Co-Ordinately Regulated Defence Against Oxidative Stress, Free Radic. Res., 1999, vol. 31, pp. 273–300.CrossRefPubMedGoogle Scholar
  22. Hunter, T., Tyrosine Phosphorylation: Past, Present and Future, Biochem. Soc. Trans., 1996, vol. 24, pp. 307–327.PubMedGoogle Scholar
  23. Kellenberger, S., Gautschi, I., Pfister, Y., and Schild, L., Intracellular Thiol-Mediated Modulation of Epithelial Sodium Channel Activity, J. Biol. Chem., 2005, vol. 280, pp. 7739–7747.CrossRefPubMedGoogle Scholar
  24. Korsunskaya, I.M., Reznikova, M.M., Putintsev, A.Yu., and Avetikyan, S.S., Experience of Use of Glutoxim in Dermatology, Lechashch. Vrach, 2003, vol. 4, pp. 78–79.Google Scholar
  25. Krutetskaya, Z.I. and Lebedev, O.E., Role of Tyrosine Phosphorylation in the Regulation of Activity of Ion Channels of Cell Mebranes, St.-Peterb.: Ayyu, 1998.Google Scholar
  26. Krutetskaya, Z.I., Lebedev, O.E., and Melnitskaya, A.V., The Role of Protein Kinase C in Na+ Transport Regulation in the Skin of Adult Frogs and Tadpoles Of Rana temporaria, Tsitologiia,. 45, no. 6, pp. 590–595.Google Scholar
  27. Krutetskaya, Z.I., Lebedev, O.E., Melnitskaya, A.V., and Nozdrachev, A.D., The Role of the Actin Cytoskeleton in the Regulation of Na+ Transport by Phosphatidylinositol Kinases in the Frog Skin, Dokl. Akad. Nauk, 2006, vol. 410, no. 4, pp. 568–570.Google Scholar
  28. Krutetskaya, Z.I., Lebedev, O.E., Melnitskaya, A.V., Antonov, V.G., and Nozdrachev, A.D., Effect of Disulfide-Containing Compounds on Na+ Transport in Frog Skin, Dokl. Akad. Nauk, 2008, vol. 421, no. 5, pp. 709–712.Google Scholar
  29. Mallis, F.J., Buss, J.E., and Thomas, J.A., Oxidative Modification of H-Ras: S-Thiolation and S-Nitrosylation of Reactive Cysteines, Biochem. J., 2001, vol. 355, pp. 145–153.CrossRefPubMedGoogle Scholar
  30. Markadieu, N., Blero, D., Bloom, A., Erneux, C., and Beauwens, R., Phosphatidylinositol 3,4,5-Trisphosphate: An Early Mediator of Insulin-Stimulated Sodium Transport in A6 Cells, Amer. J. Physiol., 2004, vol. 287, pp. F319–F328.CrossRefGoogle Scholar
  31. Markadieu, N., Crutzen, R., Blero, D., Erneux, C., and Beauwens, R., Hydrogen Peroxide and Epidermal Growth Factor Activate Phosphatidylinositol 3-Kinase and Increase Sodium Transport in a6 Cell Monolayers, Amer. J. Physiol., 2005, vol. 288, pp. F1201–F1212.CrossRefGoogle Scholar
  32. Matsumoto, P.S., Ohara, A., Duchatelle, P., and Eaton, D.C., Tyrosine Kinase Regulates Epithelial Sodium Transport in A6 Cells, Amer. J. Physiol., 1993, vol. 264, pp. C246–C250.PubMedGoogle Scholar
  33. Melnitskaya, A.V., Krutetskaya, Z.I., and Lebedev, O.E., Structural-Functional Organization of Na+ Transport in Epithelial Systems. I. Epithelial Na+ Channels, Tsitologiia, 2006b, vol. 48, no. 10, pp. 817–840.Google Scholar
  34. Melnitskaya, A.V., Krutetskaya, Z.I., and Lebedev, O.E., Vortmannin Modulates the Effect of Insulin on Na+ Transport in Frog Skin, Morfologiya, 2006a, vol. 129, no. 2, pp. 61.Google Scholar
  35. Melnitskaya, A.V., Krutetskaya, Z.I., Lebedev, O.E., Antonov, V.G., Butov, S.N., Krutetskaya, N.I., and Roschina, N.G., The Role of Tyrosine Kinases in the Effect of Oxidized Glutathione and Glutoxin on Na+ Transport in Frog Skin, in Biological Motility: Achievements and Perspectives, Pushchino: Foton-Vek, 2008, pp. 164–166.Google Scholar
  36. Natochin, Yu.V., Fundamentals of Renal Physiology, Leningrad: Nauka, 1982.Google Scholar
  37. Niisato, N., Van Driessche, W., Liu, M., and Marunaka, Y., Involvement of Protein Tyrosine Kinase in Osmoregulation of Na Transport and Membrane Capacitance in Renal A6 Cells, J. Membr. Biol., 2000, vol. 175, pp. 63–77.CrossRefPubMedGoogle Scholar
  38. Pacold, M.E., Perisic, O., Stephens, L., Hawkins, Ph.T., Wymann, M.P., and Williams, R.L., Structural Determinants of Phosphoinositide 3-Kinase Inhibition by Wortmannin, LY294002, Quercetin and Staurosporine, Mol. Cell, 2000, vol. 6, pp. 909–919.CrossRefPubMedGoogle Scholar
  39. Rao, R.K., Li, L., Baker, R.D., Baker, S.S., and Gupta, A., Glutathione Oxidation and PTPase Inhibition by Hydrogen Peroxide in Caco-2 Cell Monolayer, Amer. J. Physiol. Gastrointest. Liver. Physiol., 2000, vol. 279, pp. G332–G340.Google Scholar
  40. Rodriguez-Commes, J., Isales, C., Kalghati, L., Gasalla-Herraiz, J., and Hayslett, J.P., Mechanism of Insulin-Stimulated Electrogenic Sodium Transport, Kidney International, 1994, vol. 46, pp. 666–674.CrossRefPubMedGoogle Scholar
  41. Saltiel, A.R., Diverse Signaling Pathways in the Cellular Actions of Insulin, Amer. J. Physiol., 1996, vol. 270, pp. E375–E385.PubMedGoogle Scholar
  42. Schlessinger, J. and Ullrich, A., Growth Factor Signaling by Receptor Tyrosine Kinases, Neuron, 1992, vol. 9, pp. 383–391.CrossRefPubMedGoogle Scholar
  43. Sen, C.K., Redox Signaling and the Emerging Therapeutic Potential of Thiol Antioxidants, Biochem. Parmacol., 1998, vol. 55, pp. 1747–1758.CrossRefGoogle Scholar
  44. Sies, H., Glutathione and Its Role in Cellular Functions, Free Radic. Biol. Med., 1999, vol. 27, pp. 916–921.CrossRefPubMedGoogle Scholar
  45. Staal, F.J.T., Anderson, M.T., Staal, G.E.J., Herzenberg, L.A., Gitler, C., and Herzenberg, L.A., Redox Regulation of Signal Transduction: Tyrosine Phosphorylation and Calcium Influx, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 3619–3622.CrossRefPubMedGoogle Scholar
  46. Tilly, B.C., Van Den Berghe, N., Tertoolen, L.G., Edixhoven, M.J., and De Jonge, H.R., Protein Tyrosine Phosphorylation Is Involved in Osmoregulation of Ionic Conductances, J. Biol. Chem., 1993, vol. 268, pp. 19 919–19 922.Google Scholar
  47. Tong, Q. and Stockand, J., Receptor Tyrosine Kinase Mediate Epithelial Na+ Channel Inhibition by Epidermal Growth Factor, Amer. J. Physiol., 2005, vol. 288, pp. F150–F161.CrossRefGoogle Scholar
  48. Townsend, D.M., He, L., Hutches, S., Garrett, T.E., Pazoles, C.J., and Tew, K.D., NOV-002, a Glutathione Disulfide Mimetic, As a Modulator of Cellular Redox Balance, Cancer Res., 2008, vol. 68, pp. 2870–2877.CrossRefPubMedGoogle Scholar
  49. Ullrich, A. and Schlessinger, J., Signal Transduction by Receptors with Tyrosine Kinase Activity, Cell, 1990, vol. 61, pp. 203–212.CrossRefPubMedGoogle Scholar
  50. Vasilenko, K.P., Burova, E.B., Antonov, V.G., and Nikolsky, N.N., Oxidized Glutathione Induces Activation of the Epidermal Growth Factor Receptor and Map Kinases Erk 1,2,Tsitologiia, 2006, vol. 48, no. 6, pp. 500–507.PubMedGoogle Scholar
  51. Vlahos, C.J., Matter, W.F., Hui, K.Y., and Brown, R.F., A Specific Inhibitor of Phosphatidylinositol 3-Kinase, 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), J. Biol. Chem., 1994, vol. 269, pp. 5241–5248.PubMedGoogle Scholar
  52. Walton, K.M. and Dixon, J.E., Protein Tyrosine Phosphatases, Annu. Rev. Biochem., 1993, vol. 62, pp. 101–120.CrossRefPubMedGoogle Scholar
  53. Wang, H.-Ch., Fung, H.-L., and Chen, Y,-Q., Regulation of the RON Receptor Tyrosine Kinase Expression in Macrophages: Blocking the RON Gene Transcription by Endotoxin-Induced Nitric Oxide, J. Immunol., 2000, vol. 164, pp. 3815–3821.PubMedGoogle Scholar
  54. Wang, J., Boja, E.S., Tan, W., Tekle, E., Fales, H.M., English, S., Mieyal, J.J., and Chock, P.B., Reversible Glutathionylation Regulates Actin Polymerization in A431 Cells, J. Biol. Chem., 2001, vol. 276, pp. 47 763–47 766.Google Scholar
  55. Ward, N.E., Chu, F., and O’Brian, C.A., Regulation of Protein Kinase C Isozyme Activity by S-Glutathiolation. Methods Enzymol., 2002, vol. 353, pp. 89–100.CrossRefPubMedGoogle Scholar
  56. Wilden, P.A. and Pessin, J.E., Differential Sensitivity of the Insulin-Receptor Kinase to Thiol and Oxidizing Agents in the Absence and Presence of Insulin, Biochem. J., 1987, vol. 245, pp. 325–331.PubMedGoogle Scholar
  57. Zhukov, O.B., Zubarev, A.R., Mezentseva, M.V., Andry-ushkova, Yu.A., and Ose, I.V., Modern Aspects of Immunomodulating Therapy in Patients with Recurrent Sexually Transmitted Diseases and Antibiotic-Resistant Prostatitis, Vracheb. Soslovie, 2004, vols. 5–6, pp. 51–56.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Melnitskaya
    • 1
  • Z. I. Krutetskaya
    • 1
  • O. E. Lebedev
    • 1
  • V. G. Antonov
    • 1
  • S. N. Butov
    • 1
  1. 1.Chair of BiophysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations