Advertisement

Cell and Tissue Biology

, Volume 4, Issue 2, pp 215–222 | Cite as

Karyological characteristics of Siberian fir (Abies sibirica Ledeb.) in Central Siberia

Article
  • 38 Downloads

Abstract

Data are presented on the karyotype structure of the Siberian fir (Abies sibirica Ledeb.) from five populations of the Central Siberia. The chromosome set (2n = 24) contains seven pairs of metacentric (I–VII), four pairs of submetacentric (VIII and X–XII), and one pair of intercentric (IX) chromosomes. The morphometric parameters of the identified chromosome groups had close values in the studied populations. The variation coefficients of chromosomal parameters of the Siberian fir correspond to very low and low variability. The intraspecific chromosome polymorphism of the Siberian fir is connected mainly to variations in the number and peculiarities of the nucleolar organizing regions of chromosomes. In the territory with technogenic loading, a wide spectrum of genomic mutations of the mixoploidy type was observed in the seed off-spring of the Siberian fir; triploid seedlings, as well as rare cases of somatic reduction of chromosomes, were revealed.

Key words

Siberian fir karyotype secondary constrictions nucleoli mixoploidy polyploidy somatic reduction of chromosomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazhina,, E.V., Kvitko, O.V., Muratova,, E.N., Meiosis during Microsporogenesis and Viability of Pollen of Siberian Fir (Abies sibirica Ledeb.) in Middle Eastern Sayan Mountains, Lesovedenie, 2007, vol. 1, pp. 57–64.Google Scholar
  2. Budaragin, V.A., Karyotype of Siberian fir in Dzhungar Alatau, in Lesa i drevesnye porody Severnogo Kazakhstana (Forests and Tree Species of Northern Kazakhstan), Leningrad: Nauka, Leningr. Otd., 1974, pp. 81–84.Google Scholar
  3. Budaragin, V.A., Karyotype of Siberian fir in Kazakhstan Altai, Tsitologiia, 1972, vol. 14, no. 1, pp. 130–133.Google Scholar
  4. Butorina, A.K., Factors of Evolution of Karyotypes of Wood, Usp. Sovrem. Biol., 1989, vol. 108, no. 3, pp. 342–357.Google Scholar
  5. Butorina, A.K., Isakov, Yu.N., and Muraya, L.S., Somatic Chromosome Reduction in Scotch Pine, Tsitologiia, 1984, vol. 26, no. 7, pp. 852–855.Google Scholar
  6. Chelidze, P.V., Ultrastruktura i funktsiya yadryshka interfaznoy kletki (Ultrastructure and Function of the Nucleolus in Interphase Cell), Tbilisi: Metsniereba, 1985.Google Scholar
  7. Ekart, A.K., Ecological-Genetic Analysis of Populations of Siberian Fir (Abies sibirica Ledeb.), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Krasnoyarsk, 2006.Google Scholar
  8. Grif, V.G. and Agapova, N.D., Method of Description of Plant Karyotypes, Bot. Zhurn., 1986, vol. 71, no. 4, pp. 550–553.Google Scholar
  9. Isakov, Yu.N., Butorina, A.K., and Muraya, L.S., Detection of Spontaneous Haplotypes in Scotch Pine and the Prospects of Their Use in Forest Genetics and Breeding, Genetika, 1981, vol. 17, no. 4, pp. 701–707.Google Scholar
  10. Kiknadze, I.I., Funktsionalnaya organizatsiya khromosom (Functional Organization of Chromosomes), Leningrad: Nauka, 1972.Google Scholar
  11. Kunakh, V.A., Genomic Variability of Somatic Plant Cells. 2. Variability in Nature, Biopolim. Kletka, 1995, vol. 11, no. 6, pp. 5–40.Google Scholar
  12. Lakin, G.F., Biometriya. Uchebnoe posobie (Biometry: A Manual), Moscow: Vysshaya shkola, 1990.Google Scholar
  13. Larionova, A.Ya., Ekart, A.K., and Kravchenko, A.V., Genetic Diversity and Population Structure of Siberian Fir (Abies sibirica Ledeb.) in Middle Siberia, Russia, Euras. J. Forest Res.., 2007, vol. 10, pp. 165–192.Google Scholar
  14. Muratova, E.N. and Matveeva, M.V., Karyological Characteristics of the Siberian Fir (Abies sibirica Ledeb.) under Different Growth Conditions, Ekologiya, 1996, vol. 2, pp. 96–102.Google Scholar
  15. Muratova, E.N., Karyosystematics of the Family Pinaceae Lindl. of Siberia and Far East, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Novosibirsk, 1995a.Google Scholar
  16. Muratova, E.N., Method of Nucleolus Staining for Karyotypic Analysis of Conifers, Botan. Zhurn., 1995b, vol. 80, no. 2, pp. 82–86.Google Scholar
  17. Muratova, E.N., Sedelnikova, T.S., Karpyuk, T.V., Vladimirova, O.S., Pimenov, A.V., Mikheeva, N.A., Bazhina, E.V., and Kvitko, O.V., Karyological and Cytogenetic Studies of Conifers of Siberia and Far East, Sib. Ekol. Zhurn., 2005, vol. 12, vol. 4, pp. 573–583.Google Scholar
  18. Sedelnikova, T.S. and Pimenov, A.V., Karyological Study of Lowland and Upland Populations of Siberian Fir (Abies sibirica Ledeb.), Izv. Akad. Nauk, Ser. Biol., 2005, vol. 1, pp. 23–29.Google Scholar
  19. Sedelnikova, T.S., Differentiation of Lowland and Upland Populations of Species of the Family Pinaceae Lindl. (Reproductive and Karyotypic Characteristics), Extended Abstract of Doctoral (Biol.) Dissertation, Tomsk, 2008.Google Scholar
  20. Sedelnikova, T.S., Muratova, E.N., and Efremov, S.P, Karyological Characteristics of Conifer Species in Lowlands and Uplands of Western Siberia. Krylovia, Sib. Bot. Zhurn., 2000, vol. 2, no. 1, pp. 73–80.Google Scholar
  21. Simak, M., Gustafsson, A., and Ching, K., Occurrence of a Mosaic Aneuploid in Polyembryonic Norway Spruce Seed, Stud. For. Suec., 1968, vol. 67, pp. 1–8.Google Scholar
  22. Stepen, R.A., Kolovsky, R.A., and Kalacheva, G.S., Influence of Technogenic Emissions on the Condition of the Natural Forests of Krasnoyarsk, Ekologiya, 1996, vol. 6, pp. 410–414.Google Scholar
  23. Tretyakova, I.N. and Bazhina, E.V., Viability of Siberian Fir in Disturbed Forest Ecosystems in Mountains of Southern Siberia, Ekologiya, 1994, vol. 6, pp. 20–28.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.V.N. Sukachev Institute of ForestSiberian Branch of the Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations