Advertisement

Cell and Tissue Biology

, 3:470 | Cite as

Conductance of phytotoxin channels in the presence of large organic ions

  • O. S. Ostroumova
  • S. S. Efimova
  • L. V. Schagina
Article

Abstract

In this study we evaluated the effect of the size of penetrating anions on properties of the channels formed by cyclic lipodepsipeptide syringomycin E (SRE) in bilayer lipid membranes. Conductance and the mean lifetime of SRE channels were measured in 0.4 M solutions of sodium chloride, aspartate, and gluconate. A comparison of results of conductometric and electrophysiological measurements has shown the following: (1) the ratio of mobilities of aspartate anions in the channel and in the aqueous solution is five times lower than that of chlorine anions and (2) the conductance of channels in the presence of sodium gluconate is due mainly to cations. The obtained results indicate the binding of penetrating anions to the selective filter of the SRE pore. The radius of the SRE channel selective filter has been established (r ∼ 0.3 nm) and its localization in the cis-mouth of the pore has been found.

Key words

bilayer lipid membranes channel-forming toxins single ion channels selective filter of the pore 

References

  1. Bezrukov, S.M. and Kasianovich, D.D., Neutral Polymers in Alamethicin and Hemolysine Nanopores, Biol. Membr., 2001, vol. 18, no. 6, pp. 451–455.Google Scholar
  2. Bidwai, A.P., Zhang, L., Bachmann, R.C., and Takemoto, J.Y., Mechanism of Action of Pseudomonas syringae Phytotoxin, Syringomycin: Stimulation of Red Beet Plasma Membrane ATPase Activity, Plant Physiol., 1987, vol. 83, pp. 39–43.CrossRefPubMedGoogle Scholar
  3. Buber, E., Stindl, A., Acan, N.L., Kocagoz, T., and Zocher, R., Antimycobacterial Activity of Lipodepsipeptides Produced by Pseudomonas syringae pv. syringae B359, Nat. Prod. Lett., 2002, vol. 16, pp. 419–423.CrossRefPubMedGoogle Scholar
  4. Carneiro, C.M., Merzlyak, P.G., Yuldasheva, L.N., Silva, L.G., Thinnes, F.P., and Krasilnikov, O.V., Probing the Volume Changes during Voltage Gating of Porin 31BM Channel with Nonelectrolyte Polymers, Biochim. Biophys. Acta, 2003, vol. 1612, pp. 144–153.CrossRefPubMedGoogle Scholar
  5. Carpaneto, A., Dalla Serra, M., Menestrina, G., Gogliano, V., and Gambale, F., The Phytotoxic Lipodepsipeptide Syringopeptin 25A from Pseudomonas syringae pv. syringae Forms Ion Channels in Sugar Beet Vacuoles, J. Membr. Biol., 2002, vol. 188, pp. 237–248.CrossRefPubMedGoogle Scholar
  6. Dalla Serra, M., Fagiuoli, G., Nordera, P., Bernhart, I., Della Volpe, C., Di Giorgio, D., Ballio, A., Menestrina, G., The Interaction of Lipodepsipeptide Toxins from Pseudomonas syringae pv. syringae with Biological and Model Membranes: A Comparison of Syringotoxin, Syringomycin, and Two Syringopeptins, Mol. Plant Microbe Interact., 1999, vol. 12, pp. 391–400.CrossRefPubMedGoogle Scholar
  7. Finkelstein, A., The Ubiquitous Presence of Channels with Wide Lumens and Their Gating by Voltage, Ann. N.Y. Acad. Sci., 1985, vol. 456, pp. 26–32.CrossRefPubMedGoogle Scholar
  8. Goudet, C., Benitah, J.P., Milat, M.L., Sentenac, H., and Thibaud, J.B., Cluster Organization and Pore Structure of Ion Channels Formed by Beticolin 3, a Nonpeptidic Fungal Toxin, Biophys. J., 1999, vol. 77, pp. 3052–3059.CrossRefPubMedGoogle Scholar
  9. Kaulin, Y.A., Schagina, L.V., Bezrukov, S.M., Malev, V.V., Feigin, A.M., Takemoto, J.Y., Teeter, J.H., and Brand, J.G., Cluster Organization of Ion Channels Formed by the Antibiotic Syringomycin E in Bilayer Lipid Membranes, Biophys. J., 1998, vol. 74, pp. 2918–2925.CrossRefPubMedGoogle Scholar
  10. Krasilnikov, O.V. and Sabirov, R.Z., Comparative Analysis of Latrotoxin Channels of Different Conductance in Planar Lipid Bilayers, Evidence for Cluster Organization, Biochim. Biophys. Acta., 1992, vol. 1112, pp. 124–128.CrossRefPubMedGoogle Scholar
  11. Krasilnikov, O.V., Da Cruz, J.B., Yuldasheva, L.N., Varanda, W.A., Nogueira, R.A., A Novel Approach to Study the Geometry of the Water Lumen of Ion Channels: Colicin Ia Channels in Planar Lipid Bilayers, J. Membr. Biol., vol. 161, pp. 83–92.Google Scholar
  12. Lavermicocca, P., Iacobellis, N.S., Simmako, M., and Graniti, A., Biological Properties and Spectrum of Activity of Pseudomonas syringae pv. syringae Toxins, Physiol. Mol. Plant Pathol., 1997, vol. 50, pp. 129–140.CrossRefGoogle Scholar
  13. Malev, V.V., Ostroumova, O.S., Takemoto, J.Y., and Schagina, L.V., Voltage-Dependent Ion Channels Induced by Cyclic Lipodepsipeptides in Planar Lipid Bilayers: Structure, Properties, and Resemblance to Native Channels, Advances in Planar Lipid Bilayers and Liposomes, Amstredam: Elsevier., 2008, vol. 8, pp. 59–106.Google Scholar
  14. Malev, V.V., Schagina, L.V., Gurnev, Ph.A., Takemoto, J.Y., Nestorovich, E.M., and Bezrukov, S.M., Syringomycin E Channel: A Lipidic Pore Stabilized by Lipopeptide?, Biophys. J., 2002, vol. 82, pp. 1985–1994.CrossRefPubMedGoogle Scholar
  15. Montall, M. and Muller, P., Formation of Bimolecular Membranes from Lipid Monolayers and Study of Their Electrical Properties, Proc. Natl. Acad. Sci. USA, 1972, vol. 65, pp. 3561–3566.CrossRefGoogle Scholar
  16. Nikolskii, B.P., Spravochnik khimika (Chemist's Handbook), Leningrad: Khimiya, 1964, vol. 3.Google Scholar
  17. Ostroumova, O.S., Gurnev, F.A., and Malev, V.V., Temperature Dependences of the Parameters Characterizing SME Channel Functioning in Lipid Bilayers, Biol. Membr., 2009, vol. 26, no. 4.Google Scholar
  18. Ostroumova, O.S., Gurnev, F.A., Takemoto, D., Shchagina, L.V., and Malev, V.V., Kinetic Parameters of Single Ion Channels and Stationary Conductivities of Phytotoxin Modified Lipid Bilayers, Tsitologiia, 2005, vol. 47, no. 4, pp. 338–343.PubMedGoogle Scholar
  19. Ostroumova, O.S., Gurnev, P.A., Schagina, L.V., and Bezrukov, S.M., Asymmetry of Syringomycin E Channel Studies by Polymer Partitioning, FEBS Lett., 2007, vol. 581, pp. 804–808.CrossRefPubMedGoogle Scholar
  20. Ostroumova, O.S., Malev, V.V., and Shchagina, L.V., Cooperativity of Gating of Ion Channels Formed by Phytotoxins, Syringomycin E and Syringostatin A, Biol. Membr., 2006, vol. 23, no. 5, pp. 412–419.Google Scholar
  21. Peyronnet, O., Nieman, B., Genereux, F., Vachon, V., Laprade, R., and Schwartz, J.L., Estimation of the Radius of the Pores Formed by the Bacillus thuringiensis Cry1C Delta-Endotoxin in Planar Lipid Bilayers, Biochem. Biophys. Acta., 2002, vol. 1967, pp. 113–122.Google Scholar
  22. Robinson, R. and Stoks, R., Rastvory elektrolitov (Electrolyte Solutions), Moscow: Inostr. Liter., 1963.Google Scholar
  23. Shatursky, O., Bayles, R., Rogers, M., Jost, B.H., Songer, J.G., and Tweten, R.K., Clostridium perfringens Beta-Toxin Forms Potential-Dependent, Cation-Selective Channels in Lipid Bilayers, Infect. Immun., 2000, vol. 68, pp. 5546–5551.CrossRefPubMedGoogle Scholar
  24. Shchagina, L.V., Kaulin, Yu.A., Feigin, A.M., Takemoto, D., Brand, D., and Malev, V.V., Dependence of Properties of Ion Channels Formed by the Antibiotic Syringomycin E in Lipid Bilayers on the Electrolyte Concentration in the Aqueous Phase, Biol. Membr., 1998, vol. 15, no. 4, pp. 433–446.Google Scholar
  25. Smith, S.S., Steinle, E.D., Meyerhoff, M.E., and Dawson, D.C., Cystic Fibrosis Transmembrane Conductance Regulator: Physical Basis of Lyotropic Anion Selectivity Patters, J. Gen. Phyiol., 1999, vol. 114, pp. 799–818.CrossRefGoogle Scholar
  26. Sorensen, K.N., Kim, K.H., and Takemoto, J.Y., In Vitro Antifungal and Fungicidal Activities and Erythrocyte Toxicities of Cyclic Lipodepsinonapeptides Produced by Pseudomonas syringae pv. syringae, Antimicrob. Agents Chemother., 1996, vol. 40, pp. 2710–2713.PubMedGoogle Scholar
  27. Takemoto, J.Y., Brand, J.G., Kaulin, Y.A., Malev, V.V., Schagina, L.V., and Blasko, K., The Syringomycins: Lipodepsipeptide Pore Formers from Plant Bacterium Pseudomonas syringae, in Pore Forming Peptides and Protein Toxins, London: Taylor and Francis, 2003, vol. 5, pp. 260–271.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. S. Ostroumova
    • 1
  • S. S. Efimova
    • 1
  • L. V. Schagina
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations