Skip to main content
Log in

Spontaneous transformation and immortalization of mesenchymal stem cells in vitro

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) possess plasticity and unlimited proliferative activity in vitro, which makes them an attractive object for studies focused on new resources for regenerative medicine. MSC application is effective for treating patients with degenerative and traumatic diseases of different tissues; however, the biological basis for the therapeutic efficacy of MSCs is still obscure. We found that the long-term culture of MSCs that expressed transgenic green fluorescence protein (GFP) led to an increase in their proliferative activity and reduced adhesion, loss of differentiation, and GFP production. At the first passages, MSCs showed karyotypic features of transformation, which were complicated at the later passages by the appearance of tumorigenic properties that were detected after transplantation into syngenic recipients. Tumor cells originated from MSCs explanted in vitro did not express GFP and could not be induced to differentiate. However, in contrast to the parent cells, they showed decreased clonogenic and proliferative activity. We assume that even the short-term cultivation of MSCs in vitro may result in their spontaneous transformation. We hypothesize that immortality and unlimited MSC expansion in vitro are consequences of their transformation rather than intrinsic stem-cell properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ETC:

explanted tumor cell

MSC:

mesenchymal stem cell

SC:

stem cell

GM:

growth medium

FCS:

fetal calf serum

Cdk:

cyclin-dependent kinases

References

  • Andrews, P.W., From Teratocarcinomas to Embryonic Stem Cells, Philos. Trans. R. Soc. Lond. B Biol. Sci., 2002, vol. 357, pp. 405–417.

    Article  PubMed  Google Scholar 

  • Campisi. J. and d’Adda di Fagagna, F., Cellular Senescence: When Bad Things Happen to Good Cells, Nat. Rev. Mol. Cell. Biol., 2007, vol. 8, pp. 729–740.

    Article  PubMed  CAS  Google Scholar 

  • Committee on Standardized Genetic Nomenclature for Mice, Standard Karyotype of the Mouse, Mus musculus, Heredity, 1972, vol. 63, pp. 69–72.

    Google Scholar 

  • Cowell, J.K., A Photographic Representation of the G-Banded Structure of the Chromosomes in the Mouse Karyotype, Chromosoma, 1984, vol. 89, pp. 298–320.

    Article  Google Scholar 

  • De Coppi, P., Bartsch, G. Jr., Siddiqui, M.M., Xu, T., Santos, C.C., Perin, L., Mostoslavsky, G., Serre, A.C., Snyder, E.Y., Yoo, J.J., Furth, M.E., Soker, S., and Atala, A., Isolation of Amniotic Stem Cell Lines With Potential for Therapy, Nat. Biotechnol., 2007, vol. 25, pp. 100–106.

    Article  PubMed  Google Scholar 

  • Di Leonardo, A., Linke, S.P., Clarkin, K., and Wahl, G.M., DNA Damage Triggers a Prolonged p53-Dependent G1 Arrest and Long-Term Induction of Cip1 in Normal Human Fibroblasts, Genes Dev., 1994, vol. 8, pp. 2540–2551.

    Article  PubMed  Google Scholar 

  • Friedenstein, A.J., Precursor Cells of Mechanocytes, Int. Rev. Cytol., 1976, vol. 47, pp. 327–359.

    Article  PubMed  CAS  Google Scholar 

  • Grinchuk, T.M., Ivantsov, K.M., Alekseenko, L.L., et al., Culture Characteristics of Mesenchymal Stem Cells Expressing GFP, Tsitilogiia, 2008, vol. 50, pp. 1029–1034.

    Google Scholar 

  • Herzog, E.L., Chai, L., and Krause, D.S., Plasticity of Marrow-Derived Stem Cells, Blood, 2003, vol. 102, pp. 3483–3493.

    Article  PubMed  CAS  Google Scholar 

  • Heyflick, L., The Limited in Vitro Lifetime of Human Diploid Cell Strains, Exp. Cell. Res., 1965, vol. 37, pp. 614–636.

    Article  Google Scholar 

  • Hsu, T.C., Billen, D., and Levan, A., Mammalian Chromosomes in Vitro. XV. Patterns of Transformation, J. Natl. Cancer Inst., 1961, vol. 27, pp. 515–541.

    PubMed  CAS  Google Scholar 

  • Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W.C., Largaespada, D.A., and Verfaillie, C.M., Pluripotency of Mesenchymal Stem Cells Derived from Adult Marrow, Nature, 2002, vol. 418, pp. 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Klingelhutz, A.J., Both Rb/p16INK4a Inactivation and Telomerase Activity Are Required to Immortalize Human Epithelial Cells, Nature, 1998, vol. 396, pp. 84–88.

    Article  PubMed  CAS  Google Scholar 

  • Kruglyakov, P.V., Sokolova, I.B., Amineva, Kh.K., Nekrasova, N.N., Viide, S.V., Cherednichenko, N.V., Zaritskii, A.Yu., Semernin, E.N., Kislyakova, T.V., and Polyntsev, D.G., The Influence of Mesenchymal Stem Cell Transplantation Time on Myocardial Reparation in Rat Experimental Heart Failure, Tsitologiia, 2005, vol. 47, no. 5, pp. 404–416.

    Google Scholar 

  • Lloyd, A.C., Limits to Lifespan, Nat. Cell Biol., 2002, vol. 4, pp. E25–E27.

    Article  PubMed  CAS  Google Scholar 

  • McConnell, B. B., Starborg, M., Brookes, S., and Peters, G., Inhibitors of Cyclin-Dependent Kinases Induce Features of Replicative Senescence in Early Passage Human Diploid Fibroblasts, Curr. Biol., 1998, vol. 8, pp. 351–354.

    Article  PubMed  CAS  Google Scholar 

  • McEachern, M.J. and Blackburn, E.H., Cap-Prevented Recombination between Terminal Telomeric Repeat Arrays (Telomere CPR) Maintains Telomeres in Kluyveromyces Lactis Lacking Telomerase, Genes Dev., 1996, vol. 10, pp. 1822–1834.

    Article  PubMed  CAS  Google Scholar 

  • Meirelles, Lda.S. and Nardi, N.B., Murine Marrow-Derived Mesenchymal Stem Cell: Isolation, in Vitro Expansion, and Characterization, Br. J. Haematol., 2003, vol. 123, pp. 702–711.

    Article  Google Scholar 

  • Miura, M., Miura, Y., Padilla-Nash, H.M, Molinolo, A.A., Fu, B., Patel, V., Seo, B.M., Sonoyama, W., Zheng, J.J., Baker, C.C., Chen, W., Ried, T., and Shi, S., Accumulated Chromosomal Instability in Murine Bone Marrow Mesenchymal Stem Cells Leads to Malignant Transformation, Stem Cells, 2006, vol. 24, pp. 1095–1103.

    Article  PubMed  Google Scholar 

  • Pal’tsev, M.A., Smirnov, V.N., Romanov, Yu.A., and Ivanov, A.A., Prospects of the Use of Stem Cells in Medicine, Vest. Ros. Akad. Nauk, 2006, vol. 76, no. 2, pp. 99–103.

    Google Scholar 

  • Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., and Campisi, J., Oxygen Sensitivity Severely Limits the Replicative Lifespan of Murine Fibroblasts, Nat. Cell Biol., 2003, vol. 5, pp. 741–747.

    Article  PubMed  CAS  Google Scholar 

  • Payushina, O.D., Domaratskaya, E.I., Starostin, V.I., Mesenchymal Stem Cells: Sources, Phenotype, and Differentiation Potential, Izv. Ros. Akad. Nauk, Ser. Biol., 2006, vol. 1, pp. 6–25.

    Google Scholar 

  • Pereira, R.F., O’Hara, M.D., Laptev, A.V., Halford, K.W., Pollard, M.D. Class, R., Simon, D., Livezey, K., and Prockop, D.J., Marrow Stromal Cells as a Source of Progenitor Cells for Nonhematopoietic Tissues in Transgenic Mice with a Phenotype of Osteogenesis Imperfecta, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 1142–1147.

    Article  PubMed  CAS  Google Scholar 

  • Phinney, D.G., Biochemical Heterogeneity of Mesenchymal Stem Cell Populations: Clues to Their Therapeutic Efficacy, Cell Cycle, 2007, vol. 6, pp. 2884–2889.

    PubMed  CAS  Google Scholar 

  • Phinney, D.G., Hill, K., Michelson, C., DuTreil, M., Hughes, C., Humphries, S., Wilkinson, R., Baddoo, M., and Bayly, E., Biological Activities Encoded by the Murine Mesenchymal Stem Cell Transcriptome Provide a Basis for Their Developmental Potential and Broad Therapeutic Efficacy, Stem Cells, 2006, vol. 24, pp. 186–198.

    Article  PubMed  Google Scholar 

  • Phinney, D.G., Kopen, G., Isaacson, R.L., and Prockop, D.J., Plastic Adherent Stromal Cells from the Bone Marrow of Commonly Used Strains of Inbred Mice: Variations in Yield, Growth, and Differentiation, J. Cell Biochem., 1999, vol. 72, pp. 570–585.

    Article  PubMed  CAS  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R., Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, 1999, vol. 284, pp. 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Popov, B.V., Serikov. V.B., Petrov. N.S., Izusova. T.V., Gupta, N., and Matthay, A., Lung Epithelial Cells A549 Induce Epithelial Differentiation in Mouse Mesenchymal BM Stem Cells by Paracrine Mechanism, Tissue Eng., 2007, vol. 13, pp. 2441–2450.

    Article  PubMed  CAS  Google Scholar 

  • Prockop, D.J., Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues, Science., 1997, vol. 276, pp. 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., and Weissman, I.L., A Role for Wnt Signalling in Self-Renewal of Haematopoietic Stem Cells, Nature, 2003, vol. 423, pp. 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Riggi, N., Cironi, L., Provero, P., Suva, M.L., Kaloulis, K., Garcia-Echeverria, C., Hoffmann, F., Trumpp, A., and Stamenkovic, I., Development of Ewing’s Sarcoma from Primary Bone Marrow-Derived Mesenchymal Progenitor Cells, Cancer Res., 2005, vol. 65, pp. 11 459–11 468.

    Article  CAS  Google Scholar 

  • Romanov, S.R., Kozakiewicz, B.K., Holst, C.R., Stampfer, M.R., Haupt, L.M., and Tlsty, T.D., Normal Human Mammary Epithelial Cells Spontaneously Escape Senescence and Acquire Genomic Changes, Nature, 2001, vol. 409, pp. 633–637.

    Article  PubMed  CAS  Google Scholar 

  • Rubio, D., Garcia-Castro, J., Martin, M.C., de la Fuente, R., Cigudosa, J.C., Lloyd, A.C., and Bernad, A., Spontaneous Human Adult Stem Cell Transformation, Cancer Res., 2005, vol. 65, pp. 3035–3039.

    PubMed  CAS  Google Scholar 

  • Seabright, M., A Rapid Banding Technique for Human Chromosomes, Lancet., 1971, vol. 2, pp. 971–972.

    Article  PubMed  CAS  Google Scholar 

  • Serakinci, N. and Keith, W.N., Therapeutic Potential of Adult Stem Cells, Eur. J. Cancer., 2006, vol. 42, pp. 1243–1246.

    Article  PubMed  CAS  Google Scholar 

  • Serakincim, N., Guldberg, P., Burns, J.S., Abdallah, B., Schrodder, H., Jensen, T., and Kassem, M., Adult Human Mesenchymal Stem Cell as a Target for Neoplastic Transformation, Oncogene, 2004, vol. 23, pp. 5095–5098.

    Article  Google Scholar 

  • Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W., Oncogenic Ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a, Cell, 1997, vol. 88, pp. 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Shu, S.N., Wei, L., Wang, J.H., Zhan, Y.T., Chen, H.S., Wang, Y., Hepatic Differentiation Capability of Rat Bone Marrow-Derived Mesenchymal Stem Cells and Hematopoietic Stem Cells, World. J. Gastroenterol., 2004, vol. 10, pp. 2818–2822.

    PubMed  Google Scholar 

  • Shumakov, V.I., Onishchenko, N.A., Krashennikov, M.E., Zaidenov, V.A., Potapov, I.V., Bashkina, L.V., and Bersenev, A.V., Differentiation of Stromal Stem Cells of the Bone Marrow to Cardiocyte-Like Cells in Different Mammalian Species, Bull. Exp. Biol. Med., 2003a, vol. 135, no. 4, pp. 461–465.

    Article  Google Scholar 

  • Shumakov, V.I., Onishchenko, N.A., Rasulov, M.F., Krashennikov, M.E., and Zaidenov, V.A., Mesenchymal Stem Cells of the Bone Marrow Stimulate Regeneration of Deep Burn Wounds More Efficiently than Embryonic Fibroblasts. Bull. Exp. Biol. Med., 2003b, vol. 136, no. 8, pp. 220–223.

    Google Scholar 

  • Street, C.N., Sipione, S., Helms, L., Binette, T., Rajotte, R.V., Bleackley, R.C., and Korbutt, G.S., Stem Cell-Based Approaches to Solving the Problem of Tissue Supply for Islet Transplantation in Type 1 Diabetes, Int. J. Biochem. Cell Biol., 2004, vol. 36, pp. 667–683.

    Article  PubMed  CAS  Google Scholar 

  • Todaro, G.J. and Green, H., Quantitative Studies of the Growth of Mouse Embryo Cells in Culture and Their Development into Established Lines, J. Cell Biol., 1963, vol. 17, pp. 299–313.

    Article  PubMed  CAS  Google Scholar 

  • Venable, M.E., Lee, J.Y., Smyth, M.J., Bielawska, A., and Obeid, L.M., Role of Ceramide in Cellular Senescence, J. Biol. Chem., 1995, vol. 270, pp. 30 701–30 708.

    CAS  Google Scholar 

  • Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W., and Ho, A.D., Comparative Characteristics of Mesenchymal Stem Cells from Human Bone Marrow, Adipose Tissue, and Umbilical Cord Blood, Exp. Hematol., 2005, vol. 33, pp. 1402–1416.

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, D., Schwarz, E.J., Prockop, D.J., and Black, I.B., Adult Rat and Human Bone Marrow Stromal Cells Differentiate into Neurons, J. Neurosci. Res., 2000, vol. 61, pp. 364–370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Popov.

Additional information

Original Russian Text © B.V. Popov, N.S. Petrov, V.M. Mikhailov, A.N. Tomilin, L.L. Alekseenko, T.M. Grinchuk, A.M. Zaichik, 2009, published in Tsitologiya, Vol. 51, No. 2, 2009, pp. 91–102.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, B.V., Petrov, N.S., Mikhailov, V.M. et al. Spontaneous transformation and immortalization of mesenchymal stem cells in vitro. Cell Tiss. Biol. 3, 110–120 (2009). https://doi.org/10.1134/S1990519X09020023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X09020023

Key words

Navigation