Cell and Tissue Biology

, Volume 2, Issue 6, pp 584–589 | Cite as

TRPV5 and TRPV6 calcium channels in human T cells

  • I. O. Vassilieva
  • Yu. A. Negulyaev
  • I. I. Marakhova
  • S. B. Semenova
Article
  • 57 Downloads

Abstract

The recent cloning of the special calcium channels TRPV5 and TRPV6 (transient receptor potential vanilloid channels) has provided a molecular basis for studying previously unidentified calcium influx channels in electrically nonexcitable cells. In the present work using RT-PCR, we obtained the endogenous expression of mRNAs of genes trpv5 and trpv6 in lymphoblast leukemia Jurkat cells and in normal human T lymphocytes. Additionally, by immunoblotting, the presence of the channel-forming TRPV5 proteins has been shown both in the total lysate and in crude membrane fractions from Jurkat cells and normal T lymphocytes. The use of immunoprecipitation revealed TRPV6 proteins in Jurkat cells, whereas in normal T lymphocytes, this protein was not detected. The expression pattern and the selective Ca2+ permeation properties of TRPV5 and TRPV6 channels indicate the important role of these channels in Ca2+ homeostasis, as well as most likely in malignant transformation of blood cells.

Key words

TRPV5 and TRPV6 calcium channels RT-PCR expression of channel-forming proteins human T cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almers, W. and McCleskey, E.W., Non-selective Conductance in Calcium Channels of Frog Muscle: Calcium Selectivity in a Single-File Pore, J. Physiol., 1984, vol. 353, pp. 585–608.PubMedGoogle Scholar
  2. Boyum, A., Separation of Leukocytes from Blood and Bone Marrow, J. Clin. Lab. Invest., 1968, vol. 21, pp. 9–29.CrossRefGoogle Scholar
  3. Chomczynski, P. and Sacchi, N., Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction, Anal. Biochem., 1987, vol. 162, pp. 156–159.PubMedCrossRefGoogle Scholar
  4. Clapham, D.E., TRP Channels as Cellular Sensors, Nature, 2003, vol. 426, pp. 517–524.PubMedCrossRefGoogle Scholar
  5. Cui, J., Bian, J.C., Kagan, A., and McDonald, T.V., CaT1 Contributes to the Stores-Operated Calcium Current in Jurkat T-Lymphocytes, J. Biol. Chem., 2002, vol. 277, pp. 47175–47183.PubMedCrossRefGoogle Scholar
  6. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C., and Healy, J.I., Differential Activation of Transcription Factors Induced by Ca2+ Response Amplitude and Duration, Nature, 1997, vol. 386, pp. 855–858.PubMedCrossRefGoogle Scholar
  7. Fanger, C.M., Hoth, M., Crabtree, G.R., and Lewis, R.S., Characterization of T Cell Mutants with Defects in Capacitative Calcium Entry: Genetic Evidence for the Physiological Roles of CRAC Channels, J. Cell Biol., 1995, vol. 131, pp. 655–667.PubMedCrossRefGoogle Scholar
  8. Feske, S., Calcium Signalling in Lymphocyte Activation and Disease, Nat. Rev. Immunol., 2007, vol. 7, pp. 690–702.PubMedCrossRefGoogle Scholar
  9. Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S.H., Tanasa, B., Hogan, P.G., Lewis, R.S., Daly, M., and Rao, A., A Mutation in Orai1 Causes Immune Deficiency by Abrogating CRAC Channel Function, Nature, 2006, vol. 441, pp. 179–185.PubMedCrossRefGoogle Scholar
  10. Flockerzi, V., An Introduction on TRP Channels, Handb. Exp. Pharmacol., 2007, vol. 179, pp. 1–19.PubMedCrossRefGoogle Scholar
  11. Foster, C.S., Cornfold, P., Forsyth, L., Djamgoz, M.B., and Ke, Y., The Cellular and Molecular Basis of Prostate Cancer, BJU Int., 1999, vol. 83, pp. 171–194.PubMedCrossRefGoogle Scholar
  12. Gwack, Y., Feske, S., Srikanth, S., Hogan, P.G., and Rao, A., Signalling to Transcription: Store-Operated Ca2+ Entry and NFAT Activation in Lymphocytes, Cell Calcium, 2007, vol. 42, pp. 145–156.PubMedCrossRefGoogle Scholar
  13. Hardie, R.C. and Minke, B., Phosphoinositide-Mediated Phototransduction in Drosophila Photoreceptors: The Role of Ca2+ and Trp, Cell Calcium, 1995, vol. 18, pp. 256–274.PubMedCrossRefGoogle Scholar
  14. Haverstick, D.M., Heady, T.N., Macdonald, T.L., and Gray, L.S., Inhibition of Human Prostate Cancer Proliferation in Vitro and in Mouse Model by a Compound Synthesized to Block Ca2+ Entry, Cancer Res., 2000, vol. 60, pp. 1002–1008PubMedGoogle Scholar
  15. Hoenderop, J.G., Hartog, A., Stuiver, M., Doucet, A., Willems, PH, and Bindels, RJ., Localization of the Epithelial Ca2+ Channel in Rabbit Kidney and Intestine, J. Am. Soc. Nephrol., 2000, vol. 11, pp. 1171–1178.PubMedGoogle Scholar
  16. Hoenderop, J.G., Vennekens, R., Muller, D., Prenen, J., Droogmans, G., Bindels, R.J., and Nilius, B., Function and Expression of the Epithelial Ca2+ Channel Family: Comparison of Mammalian ECaC1 and 2, J. Physiol., 2001, vol. 537, pp. 747–761.PubMedCrossRefGoogle Scholar
  17. Hoenderop, J.G., Voets, T., Hoefs, S., Weidema, F., Prenen, J., Nilius, B., and Bindels, R.J., Homo- and Heterotetrameric Architecture of the Epithelial Ca2+ Channels TRPV5 and TRPV6, EMBO J., 2003, vol. 22, pp. 776–785.PubMedCrossRefGoogle Scholar
  18. Hofmann, T., Obukhov, AG., Schaefer, M., Harteneck, C., Gudermann, T, and Schults, G., Direct Activation of Human TRPC6 and TRPC3 Channels by Diacylglycerol, Nature, 1999, vol. 397, pp. 259–263.PubMedCrossRefGoogle Scholar
  19. Hogan, P.G. and Rao, A., Dissecting ICRAC, a Store-Operated Calcium Current, Trends Biochem. Sci., 2007, vol. 32, pp. 235–245.PubMedCrossRefGoogle Scholar
  20. Hoth, M. and Penner, R., Depletion of Intracellular Calcium Stores Activates a Calcium Current in Mast Cells, Nature, 1992, vol. 355, pp. 353–356.PubMedCrossRefGoogle Scholar
  21. Hoth, M., Calcium and Barium Permeation through Calcium Release-Activated Calcium (CRAC) Channels, Pflugers Arch., 1995, vol. 430, pp. 315–322.PubMedCrossRefGoogle Scholar
  22. Khanna, R., Myers, M.P., Laine, M., and Papazian, D.M., Glycosylation Increases Potassium Channel Stability and Surface Expression in Mammalian Cells, J. Biol. Chem., 2001, vol. 276, pp. 34028–34034.PubMedCrossRefGoogle Scholar
  23. Lehen’kyi, V., Flourakis, M., Skryma, R., and Prevarskaya, N., TRPV6 Channel Controls Prostate Cancer Cell Proliferation via Ca(2+)/NFAT-Dependent Pathways, Oncogene, 2007, vol. 26, pp. 7380–7385.PubMedCrossRefGoogle Scholar
  24. Montell, C. and Rubin, G.M., Molecular Characterization of the Drosophila trp Locus: A Putative Integral Membrane Protein Required for Phototransduction, Neuron, 1989, vol. 2, pp. 1313–1323.PubMedCrossRefGoogle Scholar
  25. Montell, C., Birnbaumer, L., and Flockerzi, V., The TRP Channels, a Remarkably Functional Family, Cell, 2002, vol. 108, pp. 595–598PubMedCrossRefGoogle Scholar
  26. Muller, D., Hoenderop, J.G., Merkx, G.F., van Os, C.H., and Bindels, R.J., Gene Structure and Chromosomal Mapping of Human Epithelial Calcium Channel, Biochem. Biophys. Res. Commun., 2000, vol. 275, pp. 47–52.PubMedCrossRefGoogle Scholar
  27. Nijenhuis, T., Hoenderop, J.G., and Bindels, R., TRPV5 and TRPV6 in Ca2+ (re)Absorption: Regulating Ca2+ Entry at the Gate, Pflugers Arch., 2005, vol. 451, pp. 181–192.PubMedCrossRefGoogle Scholar
  28. Philipp, S., Strauss, B., Hirnet, D., Wissenbash, U., Mery, L., Flockerzi, V., and Hoth, M., TRPC3 Mediates T-Cell Receptor-Dependent Calcium Entry in Human T-Lymphocytes, J. Biol. Chem., 2003, vol. 278, pp. 26629–26638.PubMedCrossRefGoogle Scholar
  29. Revankar, C.M., Advani, S.H., and Naik, N.R., Altered Ca2+ Homeostasis in Polymorphonuclear Leukocytes from Chronic Myeloid Leukaemia Patients, Mol. Cancer, 2006, vol. 27, no. 5, pp. 55–65Google Scholar
  30. Scharff, O. and Foder, B., Regulation of Cytosolic Calcium in Blood Cells, Physiol. Rev., 1993, vol. 73, pp. 547–582.PubMedGoogle Scholar
  31. Schwarz, E.C., Wissenbash, U., Niemeyer, B.A., Strauss, B., Philipp, S.E., Flockerzi, V., and Hoth, M., TRPV6 Potentiates Calcium-Dependent Cell Proliferation, Cell Calcium, 2006, vol. 39, pp. 163–173.PubMedCrossRefGoogle Scholar
  32. Semenova, S.B. and Negulyaev, Yu.A., Endogenous Cation-Transporting Channels in Human Myeloid Leukemia Cells, Biol. Membrany (in Russian), 2006, vol. 23, no. 4, pp. 321–329.Google Scholar
  33. Semenova, S.B. Fomina, A.F., Vassilieva, I.O., and Negulyaev, Y.A., Properties of Mg2+-Dependent Cation Channels in Human Leukemia K562 Cells, J. Cell. Physiol., 2005, vol. 205, pp. 372–378.PubMedCrossRefGoogle Scholar
  34. Vazquez, G., Lievremont, J.P., Bird, G.St.J., and Putney, J.W., Human Trp3 Forms both Inositol Trisphosphate Receptor-Dependent and Receptor-Independent Store-Operated Cation Channels in DT40 Avian B Lymphocytes, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 11777–11782.PubMedCrossRefGoogle Scholar
  35. Vazquez, G., Wedel, B.J., Trebak, M., Bird, G.St.J., and Putney, J.W. Jr., Expression Level of the Canonical Transient Receptor Potential 3 (TRPC3) Channel Determines Its Mechanism of Activation, J. Biol. Chem., 2003, vol. 278, pp. 21649–21654.PubMedCrossRefGoogle Scholar
  36. Voets, T., Prenen, J., Fleig, A., Vennekens, R., Watanabe, H., Hoenderop, J.G, Bindels, R.J., Droogmans, G., Penner, R., and Nilius, B., CaT1 and the Calcium Release-Activated Calcium Channel Manifest Distinct Pore Properties, J. Biol. Chem., 2001, vol. 276, pp. 47767–47770PubMedGoogle Scholar
  37. Wissenbach, U., Niemeyer, B.A., Fixemer, T., Schneidewind, A., Trost, C., Cavalie, A., Reus, K., Meese, E., Bonkhoff, H., and Flockerzi, V., Expression of CaT-Like, a Novel Calcium-Selective Channel, Correlates with the Malignancy of Prostate Cancer, J. Biol. Chem., 2001, vol. 276, pp. 19461–19468.PubMedCrossRefGoogle Scholar
  38. Yue, L., Peng, J.B., Hediger, M.A., and Clapham, D.E., CaT1 Manifests the Pore Properties of the Calcium-Release-Activated Calcium Channel, Nature, 2001, vol. 410, pp. 705–709.PubMedCrossRefGoogle Scholar
  39. Zweifach, A. and Lewis, R.S., Mitogen-Regulated Ca2+ Current of T Lymphocytes Is Activated by Depletion of Intracellular Ca2+ Stores, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 6295–6299.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • I. O. Vassilieva
    • 1
  • Yu. A. Negulyaev
    • 1
  • I. I. Marakhova
    • 1
  • S. B. Semenova
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations