Cell and Tissue Biology

, Volume 2, Issue 4, pp 411–416 | Cite as

Inhibition of phagocytic function of macrophages in vitro by dimer RNase of Bacillus intermedius

  • N. V. Kalacheva
  • O. A. Konovalova
  • D. S. Nalimov
  • M. Kh. Salakhov
  • O. N. Il’inskaya
  • B. M. Kurinenko
Article
  • 29 Downloads

Abstract

The interactions between rat peritoneal macrophage and Bacillus intermedius dimer RNase cross linked by dimethylsuberimidate was investigated in vitro. It has been found that dimer in the form of RNase at concentrations of 0.5–40μg/ml decreases the phagocytic function of macrophages. This is manifested as an inhibition of phagocytosis and suppression of the fusion of phagosomes with lysosomes in macrophages. Using atomic force microscopy, it is shown that the dimer RNase changes the surface structure of the cytoplasmic membrane more strongly than the monomer. The association between modifications of properties of the membrane and inhibition of the macrophage phagocytic function is discussed.

Keywords

RNase dimer peritoneal macrophage Bacillus intermedius RNase cytoplasmic membrane phagocytic function 

Abbreviations

AO

acridine orange

AFM

atomic force microscopy

RNase Bi

RNase of Bacillus intermedius

CL

chemiluminescence

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov, V.F., Smirnova, E.Yu., and Shevchenko, E.V., Lipidnye membrany pri fazovykh prevrashcheniyakh (Lipid Membranes during Phase Transformations), Moscow: Nauka, 1992, 136 pp.Google Scholar
  2. Draper, P., Hart, D.A., and Joung, M., Effect of Anionic Inhibitors of Phagosome-Lysosome Fusion in Cultured Macrophages When the Ingested Organism is Mycobacterium lepraemurium, Infect. Immun., 1979, vol. 24, pp. 558–561.PubMedGoogle Scholar
  3. Hauser, H., and Shipley, G.G., Interactions of Bivalent Cations with Phosphatidylserine Bilayers Membranes, Biochemistry, 1984, vol. 23, pp. 34–41.PubMedCrossRefGoogle Scholar
  4. Il’inskaya, O.N., and Makarov, A.A., Why Ribonucleases Cause Death of Cancer Cells, Molek. Biol., 2005, vol. 39, no.1, pp. 3–13.Google Scholar
  5. Kalacheva, N.V., and Kurinenko, B.M., Effect of Ribonucleases and Their Modified Derivatives on Functional Activity of Rat Peritoneal Macrophages, Biomedits. Khimiya, 2005, vol. 51, no. 3, pp. 303–310.Google Scholar
  6. Kalacheva, N.V., Narulina, A.V., and Kurinenko, B.M., Peculiarities of Electrostatic Interaction of Pancreatic and Microbial Ribonucleases with Macrophages, Tsitologiya, 2007, vol. 49, no. 4, pp. 296–299.Google Scholar
  7. Kielian, M., and Conn, F.A., Phagosome-Lysosome Fusion Characterization of Intracellular Membrane Fusion in Mouse Macrophages, J. Cell. Biol., 1980, vol. 85, pp. 754–765.PubMedCrossRefGoogle Scholar
  8. Korkina, L.G., Suslova, T.B., Gulyaeva, Zh.G., Zezin, A.B., Velichkovskii, B.T., Vladimirov, Yu.A., and Kabanov, V.A., Membrane Mechanism of Cell Activation, Biol. Membrany, 1987, vol. 4, no. 10, pp. 1093–1101.Google Scholar
  9. Korkina, L.G., Suslova, T.B., Gulyaeva, Zh.G., Zezin, A.B., Velichkovskii, B.T., and Kabanov, V.A., Chemiluminescence of Peritoneal Macrophages, Activated by Non-natural Polyelectrolytes, DAN SSSR, 1985, vol. 282, no. 1, pp. 206–209.Google Scholar
  10. Leshchinskaya, I.B., Balaban, N.P., Kapranova, M.N., and Golubenko, I.A., Methods of Determination of Nucleases and Related Enzymes, Sovremennye metody izucheniya nukleinovykh kislot i nukleaz mikroorganizmov (Current Methods of Study of Nucleic Acids and Nucleases of Microorganisms), Kazan, Izd-vo KGU, 1980, pp. 53–60.Google Scholar
  11. Libonati, M., Biological Actions of the Oligomers of Ribonuclease A CMLS, Cell. Mol. Life Sci., 2004, vol. 61, pp. 2431–2436.PubMedCrossRefGoogle Scholar
  12. Margio, B., and Sturtevant, J.M., Effect of Calcium Ions on the Thermotropic Behaviour of Neutral and Anionic Glycosphingolipids, Biochim. Biophys. Acta, 1987, vol. 901, pp. 173–183.CrossRefGoogle Scholar
  13. Mayanskii, A.N., and Mayanskii, D.N., Ocherki o neuitrofile i makrofage (Essays of Neutrophil and Macrophage), Novosibirsk: Nauka, 1983, 275 pp.Google Scholar
  14. Parahadjopoulos, D., Effect of Bivalent Cations and Proteins on Thermotropic Properties of Phospholipid Membranes, J. Colloid Interface Sci., 1977, vol. 58, pp. 459–470.CrossRefGoogle Scholar
  15. Plate, N.F., and Vasil’ev, A.E., Fiziologicheski aktivnye polimery (Physiologically Active Polymers), Moscow, Khimiya, 1986, 382 pp.Google Scholar
  16. Van der Heide, T., and Poolman, P., Osmoregulated ABC-Transport System of Lactococcus lactis Senses Water Stress via Changes in the Physical State of the Membrane, PNAS, 2000, vol. 97, pp. 7102–7107.PubMedCrossRefGoogle Scholar
  17. Wang, D., Wilson, G., and Moore, S., Preparation of Cross-Linked Dimers of Pancreatic Ribonuclease, Biochemistry, 1976, vol. 15, pp. 660–665.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • N. V. Kalacheva
    • 1
  • O. A. Konovalova
    • 2
  • D. S. Nalimov
    • 2
  • M. Kh. Salakhov
    • 2
  • O. N. Il’inskaya
    • 1
  • B. M. Kurinenko
    • 1
  1. 1.Department of Microbiology, Laboratory of Engineering EnzymologyKazan State UniversityKazanRussia
  2. 2.Department of Optics and NanophotonicsKazan State UniversityKazanRussia

Personalised recommendations