Skip to main content
Log in

Organization of mitotic apparatus poles in etoposide-treated CHO-K1 cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Analyzed in this study is the organization of mitotic spindle poles in CHO-K1 cells dividing after treatment with etoposide (1 h, 25 μM). At various periods after the treatment, we studied the following: (1) the distribution of γ-tubulin in mitotic cells by immunofluorescent staining, (2) the level of post-translational modification of α-tubulin in spindle microtubules by immunoelectron microscopy, and (3) the ultrastructure of mitotic apparatus poles by standard electron microscopy. 48 h after the addition of etoposide, disturbances in the ultrastructure of mitotic spindle poles were observed in etoposide-treated CHO-K1 cells with both bipolar and with multipolar mitotic apparatuses. The increased number of centrioles was unevenly distributed between the mitotic spindle poles; some centrioles did not take an obvious part in the mitotic spindle organization and differed in their number of outgrowing microtubules. Most centrioles were without fibrillar halos. Immunoelectron microscopy showed the differences in the staining of the poles of a multipolar spindle within one cell with antibodies to tyrosinated α-tubulin, whereas the staining of cells with antibodies to acetylated α-tubulin did not reveal such differences. Immunofluorescence staining for γ-tubulin also indicated differing organizations of poles in the same spindle. Our data findings provided the first evidence that the pattern of immunostaining and ultrastructure of mitotic apparatus poles can differ in cells dividing at various time periods after the action of etoposide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balashova, E.E., Ryaskina, S.S., Vinogradova, T.M., and Bystrevskaya, V.B., Reorganization of Mitotic Apparatus in the Etoposide-treated CHO-K1 cells Precedes Apoptotic Death, Tsitologiya, 2008, vol. 2, no. 3, pp. 282–289.

    Google Scholar 

  • Abal, M., Souto, A.A., Amat-Guerri, F., Acuna, A.U., Andreu, J.M., and Barasoain, I., Centrosome and Spindle Pole Microtubules Are Main Targets of a Fluroescent Taxoid Inducing Cell Death. Cell. Motil. Cytoskelet., 2001, vol. 49, pp. 1–15.

    Article  CAS  Google Scholar 

  • Balczon, R., Bao, L., Zimmer, W.E., Brown, K., Zinkowski, R.P., and Brinkley, B.R., Dissociation of Centrosome Replication Events from Cycles of DNA Synthesis and Mitotic Division in Hydroxyurea-Arrested CHO Cells, J. Cell Biol., 1995, vol. 130, pp. 105–115.

    Article  PubMed  CAS  Google Scholar 

  • Bharadwaj, R. and Yu, H., The Spindle Checkpoint, Aneuploidy, and Cancer, Oncogene, 2004, vol. 23, 2016–2027.

    Article  PubMed  CAS  Google Scholar 

  • Bre, M-H., Kreis, T.E., and Karsenti, E., Control of Microtubules Nucleation and Stability in MDCK Cells: the Occurrence of Noncentrosomal, Stable Detyrosinated Microtubules, J. Cell Biol., 1987, vol. 105, pp. 1283–1296.

    Article  PubMed  CAS  Google Scholar 

  • Brinkley, B.R., Managing the Centrosome Numbers Game: From Chaos to Stability in Cancer Cell Division, Trends Cell Biol. 2001, vol. 11, pp. 18–21.

    Article  PubMed  CAS  Google Scholar 

  • Brinkley, B.R. and Goepfert, T.M., Supernumerary Centrosomes and Cancer: Boveri’s Hypothesis Resurrected, Cell. Motil. Cytoskelet., 1998, vol. 41, pp. 281–288.

    Article  CAS  Google Scholar 

  • Bystrevskaya, V.B., Lobova, T.V., Smirnov, V.N., Makarova, N.E., and Kushch, A.A., Centrosome Injury in Cells Infected with HCMV, J. Struct. Biol., 1997, vol. 120, pp. 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Calarco-Gillan, P.D., Siebert, M.C., Hubble, R., Mitchison, T., and Kirschner, M., Centrosome Development in Early Mouse Embryos as Defined by an Autoantibody against Pericentriolar Material, Cell, 1983, vol. 35, pp. 621–629.

    Article  Google Scholar 

  • Castedo, M., Perfettini, J.L., Roumier, T., Andreau, K., Medema, R., and Kroemer, G., Cell Death by Mitotic Catastrophe: a Molecular Definition, Oncogene, 2004, vol. 23, pp. 2825–2837.

    Article  PubMed  CAS  Google Scholar 

  • Dodson, H., Wheatley, S.P., and Morrison, C.G., Involvement of Centrosome Amplification in Radiation-Induced Mitotic Catastrophe, Cell Cycle, 2007, vol. 6, pp. 364–370.

    PubMed  CAS  Google Scholar 

  • Duensing, S. and Münger, K., Human Papillomaviruses and Centrosome Duplication Errors: Modeling the Origins of Genomic Instability, Oncogene, 2002, vol. 21, pp. 6241–6248.

    Article  PubMed  CAS  Google Scholar 

  • Gadde, S. and Heald, R., Mechanisms and Molecules of the Mitotic Spindle, Curr. Biol., 2004, vol. 14, pp. 797–805.

    Article  Google Scholar 

  • Gundersen, G.G. and Bulinski, J.C., Distinct Population of Microtubules: Tyrosinated and Nontyrosinated Alpha Tubulin are Distributed Differently in Vivo, Cell. 1984, vol. 38, pp. 779–789.

    Article  PubMed  CAS  Google Scholar 

  • Illidge, T.M., Cragg, M.S., Fringes, B., Olive, P., and Erenpreisa, J.A., Polyploid Giant Cells Provide a Survival Mechanism for p53 Mutant Cells after DNA Damage, Cell Biol. Int., 2000, vol. 24, pp. 621–633.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P.A., Clements, P., Hudson, K., and Caldecott, K.W., A Mitotic Spindle Requirement for DNA Damage-Induced Apoptosis in CHO Cells, Cancer Res., 1999, vol. 59, pp. 2696–2700.

    PubMed  CAS  Google Scholar 

  • Joshi, H.C., Palacios, M.J., McNamara, L., and Cleveland, D.W., γ-Tubulin Is a Centrosomal Protein Required for Cell Cycle-Dependent Microtubule Nucleation, Nature, 1992, vol. 356, pp. 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Khodjakov, A. and Rieder, C.L., The Sudden Recruitment of γ-Tubulin to the Centrosome at the Onset of Mitosis and its Dynamic Exchange throughout the Cell Cycle, Do not Require Microtubules, J. Cell Biol., 1999, vol. 146, pp. 585–596.

    Article  PubMed  CAS  Google Scholar 

  • Komarova, Yu.A., Ryabov, E.V., Alieva, I.B., Uzbekov, R.E., Uzbekova, S.V., and Vorobjev, I.A., Polyclonal Antibodies against Human Gamma-Tubulin Stain Centrioles in Mammalian Cells from Different Tissues, Membr. Cell. Biol., 1997, vol. 10, pp. 503–513.

    PubMed  Google Scholar 

  • Lafanechere, L., Courtay-Cahen, C., Kawakami, T., Jacrot, M., Rudiger, M., Wehland, J., Job, D., and Margolis, R.L., Suppression of Tubulin Tyrosine Ligase During Tumor Growth, J. Cell Sci., 1998, vol. 111, pp. 171–181.

    PubMed  CAS  Google Scholar 

  • Levis, A.G. and Marin, G., Induction of Multipolar Spindle by X-ray in Mammalian Cells in Vitro, Exp Cell Res., 1963, vol. 31, pp. 448–451.

    Article  PubMed  CAS  Google Scholar 

  • Lingle, W.L., Lutz, W.H., Ingle, J.N., Maihle, N.J., and Salisbury, J.L., Centrosome Hypertrophy in Human Breast Tumors: Implications for Genomic Stability and Cell Polarity, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 2950–2955.

    Article  PubMed  CAS  Google Scholar 

  • Lock, R.B. and Ross, W.E., Inhibition of p34cdc2 Kinase Activity by Etoposide or Irradiation as a Mechanism of G2 Arrest in CHO Cells, Cancer Res., 1998, vol. 50, pp. 3761–3766.

    Google Scholar 

  • Mansilla, S., Bataller, M., and Portugal, J., Mitotic Catastrophe as a Consequence of Chemotherapy, Anticancer Agents Med. Chem., 2006, vol. 6, pp. 589–602.

    Article  PubMed  CAS  Google Scholar 

  • Onishchenko, G.E., Tsentriolyarnyi i tsentrosomnyi tsikly pri differentsirovke i patologii (Centriolar and Centrosomal Cycles in Differentiation and Pathology), Moscow: Nauka, 1993.

    Google Scholar 

  • Pan, H., Zhou, F., and Gao, S.J., Kaposi’s Sarcoma-Associated Herpesvirus Induction of Chromosome Instability in Primary Human Endothelial Cells, Cancer Res., 2004, vol. 64, pp. 4064–4068.

    Article  PubMed  CAS  Google Scholar 

  • Pittman, S., Geyp, M., Fraser, M., Ellem, K., Peaston, A., and Ireland, C., Multiple Centrosomal Microtubule Organising Centres and Increased Microtubule Stability are Early Features of VP-16-Induced Apoptosis in CCRF-CEM Cells, Leuk. Res., 1997, vol. 21, pp. 491–499.

    Article  PubMed  CAS  Google Scholar 

  • Quintyne, N.J., Reing, J.E., Hoffelder, D.R., Gollin, S.M., and Saunders, W.S., Spindle Multipolarity is Prevented by Centrosomal Clustering, Science, 2005, vol. 307, pp. 127–129.

    Article  PubMed  CAS  Google Scholar 

  • Rello-Varona, S., Gámez, A., Moreno, V., Stockert, J.C., Cristóbal, J., Pacheco, M., Cañete, M., Juarranz, A., and Villanueva, A., Metaphase Arrest and Cell Death Induced by Etoposide on HeLa Cells, Int. J. Biochem. Cell Biol., 2006, vol. 38, pp. 2183–2195.

    Article  PubMed  CAS  Google Scholar 

  • Ring, D., Hubble, R., and Kirschner, M., Mitosis in a Cell with Multiple Centrioles, J. Cell Biol., 1982, vol. 94, pp. 549–556.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Ch., Kuriyama, R., and Nishizawa, K., Microtubule—Organizing Centres Abnormal in Number, Structure and Nucleating Activity in X-Irradiation Mammalian Cells, J. Cell Biol., 1983, vol. 96, pp. 776–782.

    Article  PubMed  CAS  Google Scholar 

  • Sato, N., Mizumoto, K., Nakamura, M., and Tanaka, M., Radiation-Induced Centrosome Overduplication and Multiple Mitotic Spindles in Human Tumor Cells. Exp. Cell Res., 1983, vol. 255, pp. 321–326.

    Article  Google Scholar 

  • Saunders, W., Centrosomal Amplification and Spindle Multipolarity in Cancer Cells, Semin. Cancer Biol., 2005, vol. 15, pp. 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Schiebel, E., γ-Tubulin Complexes: Binding to the Centrosome, Regulation and Microtubule Nucleation, Curr. Opin. Cell Biol., 2000, vol. 12, pp. 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, E., Asai, D.J., Bulinski, J.C., and Kirschner, M., Post-translational Modification and Microtubule Stability, J. Cell Biol., 1987, vol. 105, pp. 2167–2177.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradova, T.M., Balashova, E.E., Smirnov, V.N., and Bystrevskaya, V.B., Detection of the Centriole Tyr-or Acet-Tubulin Changes in Endothelial Cells Treated with Thrombin Using Microscopic Immunocytochemistry, Cell Motil. Cytoskelet., 2005, vol. 62, pp. 1–12.

    Article  CAS  Google Scholar 

  • Wang, Q., Hirohashi, Y., Furuuchi, K., Zhao, H., Liu, Q., Zhang, H., Murali, R., Berezov, A., Du, X., Li, B., and Greene, M.I., The Centrosome in Normal and Transformed Cells, DNA Cell Biol., 2004, vol. 23, pp. 475–489.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, N., Yamaguchi, T., Akimoto, Y., Rattner, J.B., Hirano, H., and Nakauchi, H., Induction of M-Phase Arrest and Apoptosis after HIV-1 Vpr Expression through Uncoupling of Nuclear and Centrosomal Cycle in HeLa Cells, Exp Cell Res., 2000, vol. 258, pp. 261–269.

    Article  PubMed  CAS  Google Scholar 

  • Wehland, J. and Weber, K., Turnover of the Carboxy-Terminal Tyrosine of Alpha-Tubulin and Means of Reaching Elevated Levels of Detyrosination in Living Cells, J. Cell Sci., 1987, vol. 88, pp. 185–203.

    PubMed  CAS  Google Scholar 

  • Wiese, C. and Zheng, Y., Microtubule Nucleation: Gamma-Tubulin and Beyond, J. Cell Sci., 2006, vol. 119, pp. 4143–4153.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, K.W. and Spanel-Borowski, K., Acetylation of α-Tubulin in Different Bovine Cell Types: Implications for Microtubule Dynamics in Interphase and Mitosis, Cell Biol. Int., 1995, vol. 19, pp. 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Yih, L.H., Tseng, Y.Y., Wu, Y.C., and Lee, T.C., Induction of Centrosome Amplification during Arsenite-Induced Mitotic Arrest in CGL-2 Cells, Cancer Res., 2006, vol. 66, pp. 2098–2106.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Balashova.

Additional information

Original Russian Text © E.E. Balashova, S.S. Ryaskina, T.M. Vinogradova, V.B. Bystrevskaya, 2008, published in Tsitologiya, Vol. 50, No. 3, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balashova, E.E., Ryaskina, S.S., Vinogradova, T.M. et al. Organization of mitotic apparatus poles in etoposide-treated CHO-K1 cells. Cell Tiss. Biol. 2, 290–299 (2008). https://doi.org/10.1134/S1990519X08030103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X08030103

Key words

Navigation