Cell and Tissue Biology

, Volume 2, Issue 2, pp 107–114 | Cite as

State of nucleolus organizers in hybrids of pluripotent and somatic mouse cells cultivated under different conditions

  • E. I. Shramova (E. I. Filyasova)
  • Yu. M. Khodarovich
  • O. A. Larionov
  • O. V. Zatsepina
Article
  • 29 Downloads

Abstract

In the present work, we studied the state of chromosomal nucleolar organizing regions (NOR) in hybrid cells obtained by fusion of cells of embryonal carcinoma of a murine line PCC4aza1 and of cells of adult mouse spleen at cultivation of hybrids under different conditions. The obtained results have shown that long-term cultivation of hybrid cells in a selective medium containing HAT (hypoxanthine, aminopterin, thymidine) promotes preservation of nucleolar organizing chromosomes (NO chromosomes), whereas in nonselective medium predominant elimination of NO chromosomes was revealed. Under nonselective conditions, an increased number of active, i.e., Ag-positive, NORs was observed as compared to under selective conditions. These observations directly show that reprogramming of parent cell genomes in hybrids includes changes in the state of NO chromosomes. The number of active NORs depends on the conditions of cultivation of hybrid cells and can change in two main ways, i.e., by the elimination of NO chromosomes (under nonselective conditions) or by the inactivation of some NORs with maintenance of NO chromosomes (under selective conditions).

Key words

hybrid cells reprogramming nucleolar organizers argentophilic staining of nucleolus organizers hybridization in situ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, X., DNA Modification by Methyltransferases, Curr. Opin. Struct. Biol., 1995, vol. 5, pp. 4–10.PubMedCrossRefGoogle Scholar
  2. Derenzini, M., Sirri, V., Pession, A., Trere, D., Roussel, P., Ochs, R.L., and Hernandez-Verdun, D., Quantitative Changes of the Two Major AgNOR Proteins, Nucleolin and Protein B23, Related to Stimulation of rDNA Transcription, Exp. Cell Res., 1995, vol. 219, pp. 276–282.PubMedCrossRefGoogle Scholar
  3. Do, J.T. and Schöler, H.R., Nuclei of Embryonic Stem Cells Reprogram Somatic Cells, Stem Cells, 2004, vol. 22, pp. 941–949.PubMedCrossRefGoogle Scholar
  4. Eliceiri, G.L., The Ribosomal RNA of Hamster-Mouse Hybrid Cells, J. Cell Biol., 1972, vol. 53, pp. 177–184.PubMedCrossRefGoogle Scholar
  5. Enright, B.P., Kubota, C., Yang, X., and Tian, X.C., Epigenetic Characteristics and Development of Embryos Cloned from Donor Cells Treated by Trichostatin A or 5-Aza-2′-deoxycytidine, Biol. Reprod., 2003, vol. 69, pp. 96–901.Google Scholar
  6. Ferraro M. and Lavia, P., Activation of Human Ribosomal Genes by 5-Azacytidine, Exp. Cell Res., 1983, vol. 145, pp. 452–457.PubMedCrossRefGoogle Scholar
  7. Fukuda K., Development of Regenerative Cardiomyocytes from Mesenchymal Stem Cells for Cardiovascular Tissue Engineering, Artif. Organs, 2001, vol. 25, pp. 187–193.PubMedCrossRefGoogle Scholar
  8. Gurdon, J.B., From Nuclear Transfer to Nuclear Reprogramming: the Reversal of Cell Differentiation, Annu. Rev. Cell Dev. Biol., 2006, vol. 22. pp. 1–22.PubMedCrossRefGoogle Scholar
  9. Hadjiolov, A.A., The Nucleolus and Ribosome Biogenesis, Vienna; N.Y.: Springer-Verlag, 1985, pp. 1–128.Google Scholar
  10. Honjo, T. and Reeder, R.H., Preferential Transcription of Xenopus laevis Ribosomal RNA in Interspecies Hybrids between Xenopus laevis and Xenopus mulleri, J. Mol. Biol., 1973, vol. 80, pp. 217–228.PubMedCrossRefGoogle Scholar
  11. Howell, W.M. and Black, D.A., Controlled Silver-Staining of Nucleolus Organizer Regions with a Protective Colloidal Developer: a 1-Step Method, Experientia, 1980, vol. 36, pp. 1014–1015.PubMedCrossRefGoogle Scholar
  12. Jones, K.L., Hill, J., Shin, T.Y., Lui, L., and Westhusin, M., DNA Hypomethylation of Karyoplasts for Bovine Nuclear Transplantation, Mol. Reprod. Dev, 2001, vol. 60, pp. 208–213.PubMedCrossRefGoogle Scholar
  13. Korobova, F.V., Romanova, L.G., Noniashvili, E.M., Dyban, A.P., and Zatsepina, O.V., Detection of Nucleolus-Organizing Chromosome Regions in Mouse Mononuclear Embryos and Oocytes with Aid of Fluorescent Hybridization, Ontogenez, 2004, vol. 35, no. 5, pp. 336–345.PubMedGoogle Scholar
  14. Kunafina, E.R., Chaplina, M.V., Filyasova, E.I., Gibanova, N.V., Khodarovich, Yu.M., Larionov, O.A., and Zatsepina, O.V., Activation of Nucleolus Organizers during Cultivation of Mouse Embryonic Stem Cells of the Line R1 in vitro, Ontogenez, 2005, vol. 36, no. 2, pp. 102–109.PubMedGoogle Scholar
  15. Long, E.O. and Dawid, I.B., Repeated Genes in Eukaryotes, Annu. Rev. Biochem., 1980, vol. 49, pp. 727–764.PubMedCrossRefGoogle Scholar
  16. Miller, D.A., Dev, V.G., Tantravahi, R., and Miller, O.J., Suppression of Human Nucleolus Organizer Activity in Mouse-Human Somatic Hybrid Cells, Exp. Cell Res., 1976, vol. 101, pp. 235–243.PubMedCrossRefGoogle Scholar
  17. Miller, O.J., Miller, D.A., Dev, V.G., Tantravahi, R., and Croce, C.M., Expression of Human and Suppression of Mouse Nucleolus Organizer Activity in Mouse-Human Somatic Cell Hybrids, Proc. Natl. Acad. Sci. USA, 1976, vol. 73, pp. 4531–4535.PubMedCrossRefGoogle Scholar
  18. Miesfeld, R., Sollner-Webb, B., Croce, C., and Arnheim, N., The Absence of a Human-Specific Ribosomal DNA Transcription Factor Leads to Nucleolar Dominance in Mouse Greater than Human Hybrid Cells, Mol. Cell Biol., 1984, vol. 4, pp. 1306–1312.PubMedGoogle Scholar
  19. Onishi, T., Berglund, C., and Reeder, R.H. On the Mechanism of Nucleolar Dominance in Mouse-Human Somatic Cell Hybrids, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 484–487.PubMedCrossRefGoogle Scholar
  20. Pijnacker, L.P., Ferwerda, M.A., Puite, K.J., and Roest, S., Elimination of Solanum phureja Nucleolar Chromosomes in S. tuberosum + S. phureja Somatic Hybrids, Theor. Appl. Genet., 1987, vol. 73, pp. 878–882.CrossRefGoogle Scholar
  21. Pijnacker, L.P., Ferwerda, M.A., Puite, K.J., and Schaart, J.G., Chromosome Elimination and Mutation in Tetraploid Somatic Hybrids of Solanum tuberosum and Solanum phureja, Plant Cell Rep., 1989, vol. 8, pp. 82–85.CrossRefGoogle Scholar
  22. Robertson, E.J., Teratocarcinomas and Embryonic Stem Cells: a Practical Approach, Oxford, UK: IRL Press, 1987, pp. 1–268.Google Scholar
  23. Savino, T.M., Gebrane-Younes, J., De Mey, J., Sibaritac, J.B., and Hernandez-Verduna, D., Nucleolar Assembly of the rRNA Processing Machinery in Living Cells, J. Cell. Biol., 2001, vol. 153, pp. 1097–1110.PubMedCrossRefGoogle Scholar
  24. Serov, O., Matveeva, N., Kuznetsov, S., Kaftanovskaya, E., and Mittmann, J., Embryonic Hybrid Cells: a Powerful Tool for Studying Pluripotency and Reprogramming of the Differentiated Cell Chromosomes, An. Acad. Bras. Cienc., 2001, vol. 73, pp. 561–568.PubMedGoogle Scholar
  25. Sirri, V., Roussel, P., and Hernandez-Verdun, D., The AgNOR Proteins: Qualitative and Quantitative Changes during the Cell Cycle, Micron, 2000, vol. 31, pp. 121–126.PubMedCrossRefGoogle Scholar
  26. Soprano, K.J., Dev, V.G., Croce, C.M., and Baserga, R., Reactivation of Silent rRNA Genes by Simian Virus 40 in Human-Mouse Hybrid Cells, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 3885–3889.PubMedCrossRefGoogle Scholar
  27. De StGroth, S.F. and Scheidegger, D., Production of Monoclonal Antibodies: Strategy and Tactics, J. Immunol. Meth., 1980, vol. 35, pp. 1–21.CrossRefGoogle Scholar
  28. Swisshelm, K., Disteche, C.M., Thorvaldsen, J., Nelson, A., and Salk, D., Age-Related Increase in Methylation of Ribosomal Genes and Inactivation of Chromosome-Specific rRNA Gene Clusters in Mouse, Mutat. Res., 1990, vol. 237, pp. 131–146.PubMedGoogle Scholar
  29. Taylor, S.M. and Jones, P.A., Multiple New Phenotypes Induced in 10T1/2 and 3T3 Cells Treated with 5-Azacytidine, Cell, 1979, vol. 17, pp. 771–779.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • E. I. Shramova (E. I. Filyasova)
    • 1
  • Yu. M. Khodarovich
    • 1
  • O. A. Larionov
    • 1
  • O. V. Zatsepina
    • 1
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations