Cell and Tissue Biology

, Volume 1, Issue 6, pp 482–490 | Cite as

Dynamics of morphological changes after transplantation of mesenchymal stem cells in rat brain provoked by stroke

  • N. N. Zinkova
  • E. G. Gilerovitch
  • I. B. Sokolova
  • E. V. Shvedova
  • A. A. Bilibina
  • P. V. Kruglyakov
  • D. G. Polyntsev
Article

Abstract

The study of the dynamic of morphological changes in the brain after ischemic stroke is very important for the preclinical trial of mesenchymal stem cell (MSC) therapy for this widespread disease. Experiments were carried out in inbred Wistar-Kyoto rats. MSCs were isolated, expanded in culture, and labeled with the vital fluorescent dye PKH-26. Animals were subjected to middle cerebral artery occlusion (MCAO), followed by an injection of 5 × 106 rat MSCs into the tail vein on the day of MCAO. Control group animals received PBS injection (negative control). Animals were sacrificed at 1, 2, 3, and 5 days and 1, 2, 4, and 6 weeks after the operation. MSCs were revealed in the brain on the third day after transplantation as being distributed around brain vessels both in the ipsilateral and contralateral hemispheres. This pattern of distribution remained unchanged throughout six weeks of observation. It was demonstrated that the inflammation process and scar formation in the cell therapy group were progressing at a rate 25–30% faster than in the control group. MSC transplantation stimulated endogenous stem cell proliferation in the subependimal zone of lateral ventricles (subventricular zone). In addition, MSC injection caused a neuroprotecting effect; most penumbra neurons retained their structure in cell therapy group, whereas in control group, animal penumbra neurons died or showed signs of serious damage.

Key words

mesenchymal stem cells ischemic stroke glial scar proliferation neurons penumbra 

Abbreviations

MCAO

middle cerebral artery occlusion

MSC

mesenchymal stem cell

GFAP

glial fibrillar acid protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O., Neuronal Replacement from Endogenous Precursors in the Adult Brain after Stroke, Nature Med., 2002, vol. 8, pp. 963–970.PubMedCrossRefGoogle Scholar
  2. Belayev, L., Busto, R., Zhao, W., and Ginsberg, M., Quantitative Evaluation of Blood-Brain Barrier Permeability Following Middle Cerebral Artery Occlusion in Rats, Brain Res., 1996, vol. 739, pp. 88–96.PubMedCrossRefGoogle Scholar
  3. Bhakta, S., Hong, P., and Koc, O., The Surface Adhesion Molecule CXCR4 Stimulates Mesenchymal Stem Cell Migration to Stromal Cell Derived Factor-1 in vitro but Does Not Decrease Apoptosis Under Serum Deprivation, Cardiovasc. Revasc. Med., 2006, vol. 7, pp. 19–24.Google Scholar
  4. Bolander, H., Persson, L., Hillered, L., d Argy, R., Ponten, U., and Olsson, Y., Regional Cerebral Blood Flow and Histopathologic Changes after Middle Cerebral Artery Occlusion in Rats, Stroke, 1989, vol. 20, pp. 930–937.PubMedGoogle Scholar
  5. Chen, J., Li Yi, Katakowski, M., Chen, X., Wang, L., Lu, D., Lu, M., Gautam, S. C., and Chopp, M., Intravenous Bone Marrow Stromal Cell Therapy Reduces Apoptosis and Promotes Endogenous Cell Proliferation after Stroke in Female Rat, J. Neurosci. Res., 2003a, vol. 73, pp. 778–786.PubMedCrossRefGoogle Scholar
  6. Chen J., Zhang, G. Z., Li, Yi, Wang, L., Xu, Y., Lu, D., Gautam, S. C., Lu, M., Zhu, Z., and Chopp, M., Intravenous Administration of Human Bone Marrow Stromal Cells Induces Angiogenesis in the Ischemic Boundary Zone after Stroke in Rats, Circ. Res., 2003b, vol. 92, pp. 692–699.PubMedCrossRefGoogle Scholar
  7. Chen, J., Li, Yi, Wang, L., Katakowski, M., Gautam, S. C., Xu, Y., Lu, M., Zhang, L., and Chopp, M., Combination Therapy of Stroke in Rats With a Nitric Oxide Donor and Human Bone Marrow Stromal Cells Enhances Angiogenesis and Neurogenesis, Brain Res., 2004, vol. 1005, pp. 21–28.PubMedCrossRefGoogle Scholar
  8. Chen J., Zhang, G. Z., Li, Yi, Wang, L., Xu, Y., Lu, D., Gautam, S. C., Lu, M., Zhu, Z., and Chopp, M., Intravenous Administration of Human Bone Marrow Stromal Cells Induces Angiogenesis in the Ischemic Boundary Zone After Stroke in Rats, Circ. Res., 2003b, vol.92, pp. 692–699.PubMedCrossRefGoogle Scholar
  9. Darsalia, V., Heldmann, U., Lindvall, O., and Kokaia, Z., Stroke-induced Neurogenesis in Aged Brain, Stroke, 2005, vol.36, pp.1790–1795.PubMedCrossRefGoogle Scholar
  10. Gilerovitch, E.G., and Otellin, V.A., Transplantation of Embryonic Nerve Tissue as a Model to Study Early Stages of Central Nerve System, Usp. Physiol Sci., 2001, vol. 32, pp. 38–47.Google Scholar
  11. Ji, J., He, B., Dheen S., and Tay, S., Interactions of Chemokines and Chemokine Receptors Mediate the Migration of Mesenchymal Stem Cells to the Impaired Site in the Brain after Hypoglossal Nerve Injury, Stem Cells, 2004, vol. 22, pp. 415–427.PubMedCrossRefGoogle Scholar
  12. Jiang, Q., Ewing, J., Ding, G., Zhang, L., Zhang, Z., Li, L., Whitton, P., Lu, M., Hu, J., Li, Q., Knight, R., and Chopp, M., Quantitative Evaluation of BBB Permeability after Embolic Stroke in Rat Using MRI, J. Cereb. Blood Flow Metab., 2005, vol. 25, pp. 583–592.PubMedCrossRefGoogle Scholar
  13. Kruglyakov, P.V., Sokolova, I.B., Amineva, H.K., Nekrasova, N.N., Viide, S.V., Cherednichenko, N.N., Zaritskii, A.Yu., Semerin, E.N., Kislakova, T.V., and Polyntsev, D.G., Therapy of Experimental Miocardial Infarction in Rats with Transplantation of Syngeneic Mesenchymal Cells, Tsitologiia, 2004, vol. 12, pp. 1043–1054.Google Scholar
  14. Lenzser, G., Kis, B., Bari, F., and Busija, D., Diazoxide Preconditioning Attenuates Global Cerebral Ischemia-induced Blood-Brain Barrier Permeability, Brain Res., 2005, vol. 1051, pp. 72–80.PubMedCrossRefGoogle Scholar
  15. Memezawa, H., Smith, M., and Siesjo, B., Penumbral Tissues Salvaged by Reperfusion Following Middle Cerebral Artery Occlusion in Rats, Stroke, 1992, vol. 23, pp. 552–559.PubMedGoogle Scholar
  16. Nagasawa, H., and Kogure, K., Correlation Between Cerebral Blood Flow and Histologic Changes in a New Rat Model of Middle Cerebral Artery Occlusion, Stroke, 1989, vol. 20, pp.1037–1043.PubMedGoogle Scholar
  17. Paxinos, G., and Watson, Ch., The Rat Brain in Stereotaxic Coordinates, New York, Acad. Press: 1998.Google Scholar
  18. Silver, J., and Miller, J., Regeneration Beyond the Glial Scar, Nature Rev. Neurosci., 2004, vol. 5, pp. 146–156.CrossRefGoogle Scholar
  19. Son, B., Marguez-Curtis, L., Kucia, M., Wysoczynski, M., Turner, A., Ratajczak, J., Ratajczak, M., and Janowska-Wieczorek, A., Migration of Bone Marrow and Cord Blood Mesenchymal Stem Cells in vitro in Regulated by Stromalderived Factor-1-CXCR4 and Hepatocyte Growth Factor-cmet Axes and Involves Matrix Metalloproteinases, Stem Cells, 2006, vol. 24, pp.1254–1264.PubMedCrossRefGoogle Scholar
  20. Thored, P., Arvidsson, A., Cacci, E., Ahlenius, H., Kallur, T., Darsalia, V., Ekdahl, C., Kokaia, Z., and Lindvall, O., Persistent Production of Neurons from Adult Brain Stem Cells during Recovery after Stroke, Stem Cells, 2006, vol. 24, pp. 739–747.PubMedCrossRefGoogle Scholar
  21. Tyson, G., Teasdale, G., Graham, D., and McCulloch, J., Focal Cerebral Ischemia in the Rat: Topography of Hemodynamic and Histopathological Change, Ann. Neurol., 1984, vol. 15, pp. 559–567.PubMedCrossRefGoogle Scholar
  22. Woodbury, D., Schwarz, E., Prockop, D., and Black I., Adult Rat and Human Bone Marrow Sstromal Cells Differentiate into Neurons, J. Neurosci. Res., 2000, vol. 1, pp. 364–371.CrossRefGoogle Scholar
  23. Woodbury, D., Reynolds, K. and Black, I.,. Adult Bone Marrow Stromal Stem Cells Express Germ line, Ectodermal, Endodermal and Mesodermal Genes Prior to Neurogenesis, J. Neurosci. Res., 2002, vol. 96, pp. 908–917.CrossRefGoogle Scholar
  24. Wynn, R., Hart, C., Corradi-Perini, C., O’Neill, L, Evans, C.A., Wraith, J.E., Fairbairn, L.J., and Bellantuono. I. A Small Proportion of Mesenchymal Stem Cells Strongly Expresses Functionally Active CXCR4 Receptor Capable of Promoting Migration to Bone Marrow, Blood, 2004, vol. 104, pp. 2643–2645.PubMedCrossRefGoogle Scholar
  25. Zhang, Z., Zhang, L., Tsang, W., Soltanian-Zadeh, H., Morris, D., Zhang, R., Goussev, A., Powers, C., Yeich, T. and Chopp, M., Correlation of VEGF and Angiopoietin Expression with Disruption of Blood-Brain Barrier and Angiogenesis After Focal Cerebral Ischemia, J. Cereb Blood Flow Metab., 2002, vol. 22, pp. 379–392.PubMedCrossRefGoogle Scholar
  26. Zinkova, N.N., Sokolova, I.B., Vijde, S. K., Shvedova, E.V., Alexandrov, G.V., Kruglyakov, P.V., and Polyntsev D.G., Mesenchymal Stem Cell Therapy of Brain Ischemic Stroke in Rat, Cell Tissue Biol., 2007, vol. 5, pp. 389–398.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • N. N. Zinkova
    • 1
  • E. G. Gilerovitch
    • 2
  • I. B. Sokolova
    • 1
  • E. V. Shvedova
    • 1
  • A. A. Bilibina
    • 1
  • P. V. Kruglyakov
    • 1
  • D. G. Polyntsev
    • 1
  1. 1.Trans-Technologies, Ltd.St. PetersburgRussia
  2. 2.State Institute of Experimental Medicine of Russian Academy of Medical SciencesSt. PetersburgRussia

Personalised recommendations