Cell and Tissue Biology

, Volume 1, Issue 4, pp 277–292 | Cite as

The dynamics and mechanisms of nucleolar reorganization during mitosis



In the vast majority of eukaryotic somatic cells the nucleolus is the largest and the most dynamic nuclear domain. The canonical nucleolar function is ribosome biogenesis, which includes ribosomal DNA (rDNA) transcription, pre-rRNA processing and ribosomal subunit assembly. Furthermore, according to recent data the nucleolus and specific nucleolar proteins participate in cell cycle regulation, apoptosis and control of aging. These functions are mostly realized by the nucleolus at interphase and become downregulated during mitosis, when the nucleolus disassembles.

This review summarizes the current data on the dynamics and mechanisms of the disassembly and reassembly of the nucleolus during mitosis. Particular attention is given to the information obtained by analysis of the dynamics of the nucleolus in living cells and by modeling of the premature assembly of the nucleolus under various experimental conditions.

Key words

nucleolus mitosis mechanisms of disassembly and reassembly peripheral chromosomal material nucleolus-derived foci prenucleolar bodies analytic methods 



granular component


small nucleolar RNA


47-45S rRNA precursor


dense fibrillar component


peripheral chromosome material


ribosomal DNA


ribosomal RNA


fibrillar center


nucleolus-derived focus


chromosomes-nucleolar organizing chromosomes


nucleolar organizing region


anaphase promoting complex (cyclosome)


cyclin B-dependent kinase 1


green fluorescent protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramova, N.B. and Neyfakh, A.A., Migration of Newly Synthesized RNA during Mitosis. III. Nuclear RNA in the Cytoplasm of Metaphase Cells, Exp. Cell Res., 1973, vol. 77, pp. 136–142.PubMedGoogle Scholar
  2. 2.
    Andersen, J.S., Lam, Y.W., Leung, A.K., Ong, S.E., Lyon, C.E., Lamond, A.I., and Mann, M. Nucleolar Proteome Dynamics, Nature, 2005, vol. 433, pp. 77–83.PubMedGoogle Scholar
  3. 3.
    Andersen, J.S., Lyon, C.E., Fox, A.H., Leung, A.K.L., Lam, Y.W., Steen, H., Mann, M., and Lamond, A.I., Directed Proteomic Analysis of the Human Nucleolus, Curr. Biol., 2002, vol. 12, pp.1–11.PubMedGoogle Scholar
  4. 4.
    Angelier, N., Tramier, M., Louvet, E., Coppey-Moisan, M., Savino, T.M., De Mey, J.R., and Hernandez-Verdun, D.D., Tracking the Interactions of rRNA Processing Proteins during Nucleolar Assembly in Living Cells, Mol. Biol. Cell., 2005, vol. 16, pp. 2862–2871.PubMedGoogle Scholar
  5. 5.
    Azum-Gélade, M.C., Noaillac-Depeyre, J., Caizergues-Ferrer, M., and Gas, N., Cell Cycle Redistribution of U3 snRNA and Fibrillarin. Presence in the Cytoplasmic Nucleolus Remnant and in the Prenucleolar Bodies at Telophase, J. Cell Sci., 1994, vol. 107, pp. 463–75.PubMedGoogle Scholar
  6. 6.
    Belenguer, P., Caizergues-Ferrer, M., Labbe, J.-C., Doree, M., and Amalric, F. Mitosis Specific Phosphorylation of Nucleolin by p34cdc2 Protein Kinase, Mol. Cell Biol., 1990, vol. 10, pp. 3607–3618.PubMedGoogle Scholar
  7. 7.
    Bell, P., Mais, C., McStay, B., and Scheer, U., Association of the Nucleolar Transcription Factor UBF with the Transcriptionally Inactive rRNA Genes of Pronuclei and Rarly Xenopus Embryos, J. Cell Sci., 1997, vol. 110, pp. 2053–2063.PubMedGoogle Scholar
  8. 8.
    Benavente, R., Rose, K.M., Reimer, G., Hügle-Dörr, B., and Scheer, U., Inhibition of Nucleolar Reformation after Microinjection of Antibodies to RNA Polymerase I into Mitotic Cells, J. Cell Biol., 1987, vol. 105, pp.1483–1491.PubMedGoogle Scholar
  9. 9.
    Beven, A.F., Lee, R., Razaz, M., Leader, D.J., Brown, J.W., and Shaw, P.J., The Organization of Ribosomal RNA Processing Correlates with the Distribution of Nucleolar snRNAs, J. Cell Sci., 1996, vol. 109, pp.1241–1251.PubMedGoogle Scholar
  10. 10.
    Brown, D.C. and Gatter, K.C., Ki67 Protein: the Immaculate Deception? Histopathology, 2002, vol. 40, pp. 2–11.PubMedGoogle Scholar
  11. 11.
    Burakov, V.V., Chaban, I.A., Polyakov, V.J., and Chentsov Y.S., Extrachromosomal Peripheral Material in the Wheat Endosperm, Tsitologiia, 1994, vol. 36, no. 11, pp. 1062–1068.Google Scholar
  12. 12.
    Chelidze, P.V. and Zatsepina, O.V., Morpho-functional Classification of Nucleoli, Usp. Sobr. Biol., 1989, vol. 105, no. 2, pp. 252–268.Google Scholar
  13. 13.
    Chen, D., Dundr, M., Wang, C., Leung, A., Lamond, A., Misteli, T., and Huang, S., Condensed Mitotic Chromatin is Accessible to the Transcription Machinery and Chromatin Structural Proteins, J. Cell Biol., 2005, vol. 168, pp. 41–54.PubMedGoogle Scholar
  14. 14.
    Chentsov, Y.S. and Andreev, V.V., Inhibition of Nucleoli Growth in Divided Cells of Tissue Culture by Low Actinomycin Doses, J. Obch. Boil., 1966. vol. 27, no. 5, pp. 615–619.Google Scholar
  15. 15.
    Chentsov, Y.S. and Polyakov, V.Y., Ultrastructure of Cell Nucleus, Moscow: Nauka, 1974.Google Scholar
  16. 16.
    Chentsov, Y.S. and Polyakov, V.Y., Electron Microscopic Study of Crepis Capillaries Chromosomes, Dokl. Acad. Nauk, 1969, vol. 189, no.1, pp. 185–187.Google Scholar
  17. 17.
    Chentsov, Y.S., Peripheral Material or Matrix of Mitotic Chromosomes: Structure and Properties, Ontogenes, 2000, vol. 31, pp. 388–399.Google Scholar
  18. 18.
    Cheutin, T., Misteli, T., and Dundr, M., Dynamics of Nucleolar Components, in The nucleolus, New York: Kluwer Academic/Plenium Publishers, 2004, pp. 29–40.Google Scholar
  19. 19.
    Cheutin, T., O’Donohue, M.-F., Beorchia, A., Vandelaer, M., Kaplan, H., Defever, B. Ploton, D., and Thiry, M., Three-Dimensional Organization of Active rRNA Genes within the Nucleolus, J. Cell Sci., 2002, vol. 115, pp. 3297–3307.PubMedGoogle Scholar
  20. 20.
    Clute, P. and Pines, J., Temporal and Spatial Control of Cyclin B1 Destruction in Metaphase, Nat. Cell Biol., 1999, vol. 1, pp. 82–87.PubMedGoogle Scholar
  21. 21.
    Cmarko, D., Verschure, P.V., Rothblum, L.I., Hernandez-Verdun, D., Amalric, F., van Driel, R., and Fakan S., Ultrastructural Analysis of Nucleolar Transcription in Cells Microinjected with 5-bromo-UTP, Histochem. Cell Biol., 2000, vol. 113, pp.181–187.PubMedGoogle Scholar
  22. 22.
    DiMario, PJ., Cell and Molecular Biology of Nucleolar Assembly and Disassembly, Int. Rev. Cytol., 2004, vol. 239, pp. 99–178.PubMedGoogle Scholar
  23. 23.
    Dousset, T., Wang, C., Verheggen, C., Chen, D., Hernandez-Verdun, D., and Huang, S., Initiation of Nucleolar Assembly is Independent of RNA Polymerase I Transcription, Mol. Biol. Cell., 2000, vol. 11, pp. 2705–2717.PubMedGoogle Scholar
  24. 24.
    Dundr, M. and Olson, M.O., Partially Processed pre-rRNA is Preserved in Association with Processing Components in Nucleolus-Derived Foci during Mitosis, Mol. Biol. Cell., 1998, vol. 9, pp. 2407–2422.PubMedGoogle Scholar
  25. 25.
    Dundr, M., Leno, G.H., Lewis, N., Rekosh, D., Hammarskjold, M.-L., and Olson, M.O.J., Location of the HIV-1 Rev Protein during Mitosis: Inactivation of the Nuclear Export Signal Alters the Pathway for Postmitotic Reentry into Nucleoli, J. Cell Sci., 1996, vol. 109, pp. 2239–2251.PubMedGoogle Scholar
  26. 26.
    Dundr, M., Meier, U.T., Lewis, N., Rekosh, D., Hammarskjold, M.L., and Olson, M.O., A class of Nonribosomal Nucleolar Components is Located in Chromosome Periphery and in Nucleolus-Derived Foci during Anaphase and Telophase, Chromosoma, 1997, vol. 105, pp. 407–417.PubMedGoogle Scholar
  27. 27.
    Dundr, M., Misteli, T., and Olson M.O., The Dynamics of Postmitotic Reassembly of the Nucleolus, J. Cell Biol., 2000, vol. 150, pp. 433–446.PubMedGoogle Scholar
  28. 28.
    Earnshaw, W.C. and Bernat, R.L., Chromosomal Passengers: Toward an Integrated View of Mitosis, Chromosoma, 1991, vol. 100, pp. 139–146.PubMedGoogle Scholar
  29. 29.
    Emiliani, V., Sanvitto, D., Tramier, M., Piolot, T., Petrasek, Z., Kemnitz, K., Durieux, C., and Coppey-Moisan, M., Low-Intensity Two-Dimensional Imaging of Fluorescence Lifetimes in Living Cells, Appl. Phys. Lett., 2003, vol. 83, pp. 2471–2473.Google Scholar
  30. 30.
    Epifanova O.I., Lectures on the Cell Cycle, Moscow: KMK, 2003.Google Scholar
  31. 31.
    Fan, H. and Penman, S., Regulation of Synthesis and Processing of Nucleolar Components in Metaphase-Arrested Cells, J. Mol. Biol., 1971, vol. 59, pp. 27–42.PubMedGoogle Scholar
  32. 32.
    Fatica, A. and Tollervey, D., Making Ribosomes, Curr. Opin. Cell Biol., 2002, vol. 14, pp. 313–318.PubMedGoogle Scholar
  33. 33.
    Fernandez-Gomez, M.E., Sanchez-Pina, M.A., Risueno, M.C., Medina, F.J., and Stockert, J.C, Differential Staining of the Nucleolar Organizing Region (NOR) and Nucleolar Components by a New Silver Technique in Plants, Cell Mol. Biol., 1983, vol. 29, pp.181–87.PubMedGoogle Scholar
  34. 34.
    Fomproix, N., Gebrane-Younes, J., and Hernandez-Verdun, D., Effects of Anti-Fibrillarin Antibodies on Building of Functional Nucleoli at the End of Mitosis, J. Cell Sci., 1998, vol. 111, pp. 359–72.PubMedGoogle Scholar
  35. 35.
    Fromont-Racine, M., Senger, B., Saveanu, C., and Fasiolo F., Ribosome Assembly in Eukaryotes, Gene, 2003, vol. 313, pp. 17–42.PubMedGoogle Scholar
  36. 36.
    Gautier, T., Dauphin-Villemant, C., Andre, C., Masson, C., Arnoult, J., and Hernandez-Verdun, D. Identification and Characterization of a New Set of Nucleolar Ribonucleoproteins which Line the Chromosomes during Mitosis, Exp. Cell Res., 1992a, vol. 200. pp. 5–15.PubMedGoogle Scholar
  37. 37.
    Gautier, T., Fomproix, N., Masson, C., Azum-Gelade, M.C., Gas, N., and Hernandez-Verdun, D., Fate of Specific Nucleolar Perichromosomal Proteins during Mitosis: Cellular Distribution and Association with U3 snoRNA, Biol. Cell., 1994, vol. 82, pp. 81–93.PubMedGoogle Scholar
  38. 38.
    Gautier, T., Masson, C., Quintana, C., Arnoult, J., and Hernandez-Verdun, D., The Ultrastructure of the Chromosome Periphery in Human Cell Lines. An in situ Study Using Cryomethods in Electron Microscopy, Chromosoma, 1992b, vol. 101, pp. 502–510.PubMedGoogle Scholar
  39. 39.
    Gautier, T., Robert-Nicoud, M., Guilly, M.-N., and Hernandez-Verdun, D., Relocation of Nucleolar Proteins Around Chromosomes at Mitosis. A Study by Confocal Laser Scanning Microscopy, J. Cell Sci., 1992c, vol. 102, pp. 729–737.PubMedGoogle Scholar
  40. 40.
    Goessens, G., Nucleolar Structure, Int. Rev. Cytol., 1984, vol. 87, pp. 107–158.PubMedGoogle Scholar
  41. 41.
    Grandi, P., Rybin, V., Bassler, J., Petfalski, E., Strauss, D., Marzioch, M., Schafer, T., Kuster, B., Tschochner H., Tollervey, D., Gavin, A.C., and Hurt, E., 90S Preribosomes Include the 35S-pre-rRNA, the U3 snoRNP, and 40S-Subunit Processing Factors but Predominantly Lack 60S Synthesis Factors, Mol. Cell., 2002, vol. 10, pp. 105–115.PubMedGoogle Scholar
  42. 42.
    Granick, D., Nucleolar Necklaces in Chick Embryo Fibroblast Cells. I. Formation of Necklaces by Dichlororibobenzimidazole and Other Adenosine Analogues That Decrease RNA, J. Cell Biol., 1975a, vol. 153, pp. 1097–1110.Google Scholar
  43. 43.
    Granick, D., Nucleolar Necklaces in Chick Embryo Fibroblast Cells. II. Microscope Observations of the Effect of Adenosine Analogues on Nucleolar Necklace Formation, J. Cell Biol., 1975b, vol. 65, pp. 418–427.PubMedGoogle Scholar
  44. 44.
    Grummt, I., Regulation of Mammalian Ribosomal Gene Transcription by RNA Polymerase I, Prog. Nucleic. Acid Res. Mol. Biol., 1999, vol. 62, pp. 109–154.PubMedGoogle Scholar
  45. 45.
    Guillot, P.V., Martin, S., Pombo, A., The Organization of Transcription in the Nucleus of Mammalian Cells, in: Vision of the Cell Nucleus, California: American Scientific Publishers, 2005, pp.95–105.Google Scholar
  46. 46.
    Hadjiolov, A.A., The Nucleolus and Ribosome Biogenesis, in: Cell Biol. Monographs, Wien, New York: Springer-Werlag, 1985, vol. 12, pp. 1–268.Google Scholar
  47. 47.
    Hernandez-Verdun, D. and Gautier, T., The Chromosome Periphery during Mitosis, Bioessays, 1994, vol. 16, pp. 179–185.PubMedGoogle Scholar
  48. 48.
    Hernandez-Verdun, D., Behavior of the Nucleolus during Mitosis, in: The Nucleolus, New York: Kluwer Academic/Plenium Publishers, 2004, pp. 41–57.Google Scholar
  49. 49.
    Hernandez-Verdun, D., Nucleolus: from Structure to Dynamics, Histochem. Cell Biol., 2006, vol. 125, pp. 127–137.PubMedGoogle Scholar
  50. 50.
    Hernandez-Verdun, D., Roussel, P., and Gebrane-Younes, G., Emerging Concepts of Nucleolar Assembly, J. Cell Sci., 2002, vol. 115, pp. 2265–2270.PubMedGoogle Scholar
  51. 51.
    Hozak, P., Zatsepina, O., Vasilyeva, I., and Chentsov Y., An Electron Microscopic Study of Nucleolus-Organizing Regions at Some Stages of the Cell Cycle (G0-Period, G2-Period, Mitosis), Biol Cell., 1986, vol. 57, pp. 197–205.PubMedGoogle Scholar
  52. 52.
    Hsu, T.C., Arrighi, F.E., Klevecz, R.R., and Brinkley, B.R., The Nucleoli in Mitotic Divisions of Mammalian Cells in vitro, J. Cell Biol., 1965, vol. 26, pp. 539–553.PubMedGoogle Scholar
  53. 53.
    Huang, S., Building an Effcient Factory: Where is pre-rRNA Synthesized in the Nucleolus? J. Cell Biol., 2002, vol. 157, pp. 739–741.PubMedGoogle Scholar
  54. 54.
    Hugle, B., Hazan, R., Scheer, U., and, Franke, W.W., Localization of Ribosomal Protein S1 in the Granular Component of the Interphase Nucleolus and Its Distribution during Mitosis, J. Cell Biol., 1985, vol. 100, pp. 873–886.PubMedGoogle Scholar
  55. 55.
    Jiang, P.S., Chang, J.H., and Yung, B.Y., Different Kinases Phosphorylate Nucleophosmin/B23 at Different Sites during G(2) and M Phases of the Cell Cycle, Cancer Lett., 2000, vol. 153, pp. 151–160.PubMedGoogle Scholar
  56. 56.
    Jiménez-Garcia, L.F., Rothblum, L.I., Busch, H., and Ochs, R.L., Nucleologenesis: Use of Non-Isotopic in situ Hybridization and Immunocytochemistry to Compare the Localization of rDNA and Nucleolar Proteins during Mitosis, Biol. Cell., 1989, vol. 65, pp. 239–246.PubMedGoogle Scholar
  57. 57.
    Jiménez-Garcia, L.F., Segura-Valde, M.L., Ochs R.L., Rothblum, L.I., Hannan, R., and Spector, DL., Nucleologenesis: U3 snRNA-Containing Prenucleolar Bodies Move to Sites of Active pre-rRNA Transcription after Mitosis, Mol. Biol. Cell., 1994, vol. 5, pp. 955–966.PubMedGoogle Scholar
  58. 58.
    Jordan, E.G. and McGovern, J.H., The Quantitative Relationship of the Fibrillar Centres and Other Nucleolar Components to Changes in Growth Conditions, Serum Deprivation and Low Doses of Actinomycin D in Cultured Diploid Human Fibroblasts (Strain MRC-5), J. Cell Sci., 1981, vol. 52, pp. 373–89.PubMedGoogle Scholar
  59. 59.
    Klein, J. and Grummt, I., Cell Cycle-Dependent Regulation of RNA Polymerase I Transcription: The Nucleolar Transcription Factor UBF is Inactive in Mitosis and Early G1-period, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 6096–6101.PubMedGoogle Scholar
  60. 60.
    Koberna, K., Malinsky, J., Pliss, A., Masata, M., Vecerova, J., Fialova, M., Bednar, J., and Raska, I., Ribosomal Genes in Focus: New Transcripts Label the Dense Fibrillar Components and Form Clusters Indicative of “Christmas Trees” in situ, J. Cell Biol., 2002, vol. 157, pp.743–748.PubMedGoogle Scholar
  61. 61.
    Lafontaine, D.L. and, Tollervey, D., The Function and Synthesis of Ribosomes, Nat. Rev. Mol. Cell Biol., 2001, vol. 2, pp. 514–520.PubMedGoogle Scholar
  62. 62.
    Lafontaine, J.G. and Chouinard, L.A., A Correlated Light and Electron Microscope Study of the Nucleolar Material during Mitosis in Vicia faba, J. Cell Biol., 1963, vol. 17, pp.167–201.PubMedGoogle Scholar
  63. 63.
    Lafontaine, J.G., Structure and Mode of Formation of the Nucleolus in Meristematic Cells of Vicia faba and Allium cepa, J. Biophys. Biochem. Cytol., 1958, vol. 4, pp. 777–784.PubMedGoogle Scholar
  64. 64.
    Lasareva, E.M., Zatsepina, O.V., Polyakov, V.Y., Shambarant, O.G., Stukacheva, E.A., and Chentsov, Y.S., Compartmentalization of Some Argyrophilic Nuclear Proteins in Interphase and Mitosis. 1. Localization of Argyrophilic Nuclear Proteins in Interphase and Mitotic Cells in Wheat Endosperm, Tsitologiia, 1997a, vol. 39, pp. 688–693.Google Scholar
  65. 65.
    Lasareva, E.M., Zatsepina, O.V., Polyakov, V.Y., Shambarant, O.G., Stukacheva, E.A., and Chentsov, Y.S., 2. Immunocytochemical Localization of 53 and 34 K Nucleolar Proteins in Interphase and Mitotic Cells in Endosperm of Wheat Triticum aestivum, Tsitologiia, 1997b, vol. 39, pp. 688–693.Google Scholar
  66. 66.
    Le Panse, S., Masson, C., Héliot, L., Chassery, J.-M., Junéra, H.R., and Hernandez-Verdun, D., 3-D Organization of Single Ribosomal Transcription Units after DRB Inhibition of RNA Polymerase II Transcription, J. Cell Sci., 1999, vol. 112, pp. 2145–2154.PubMedGoogle Scholar
  67. 67.
    Lerch-Gaggl, A., Haque, J., Li J., Ning, G., Traktman, P., and Duncan, S.A., Pescadillo is Essential for Nucleolar Assembly, Ribosome Biogenesis and Mammalian Cell Proliferation, J. Biol. Chem., 2002, vol. 277, pp. 45347–45355.PubMedGoogle Scholar
  68. 68.
    Leung, A.K., Gerlich, D., Miller, G., Lyon, C., Lam, Y.W., Lleres, D., Daigle, N., Zomerdijk, J., Ellenberg, J., and Lamond, A.I., Quantitative Kinetic Analysis of Nucleolar Breakdown and Reassembly during Mitosis in Live Human Cells, J. Cell Biol., 2004, vol. 166, pp. 787–800.PubMedGoogle Scholar
  69. 69.
    Liu, J. and Maller, J.L., Xenopus Polo-Like Kinase Plx1: a Multifunctional Mitotic Kinase, Oncogene, 2005, vol. 24, pp. 238–247.PubMedGoogle Scholar
  70. 70.
    Louvet, E., Junera, H.R., Le Panse, S., and Hernandez-Verdun, D., Dynamics and Compartmentation of the Nucleolar Processing Machinery, Exp. Cell Res., 2005, vol. 304, pp. 457–470.PubMedGoogle Scholar
  71. 71.
    Magoulas, C., Zatsepina, O.V., Jordan, P.W., Jordan, E.G., and Fried M., The SURF-6 Protein is a Component of the Nucleolar Matrix and has a High Binding Capacity for Nucleic Acids in vitro, Eur. J. Cell Biol., 1998, vol. 75, pp. 174–183.PubMedGoogle Scholar
  72. 72.
    Medina, F.J., Cerdido, A., and Fernandez-Gomez, M.E., Components of the Nucleolar Processing Complex (Pre-rRNA, Fibrillarin, and Nucleolin) Colocalize during Mitosis and are Incorporated to Daughter Cell Nucleoli, Exp. Cell Res., 1995, vol. 221, pp. 111–125.PubMedGoogle Scholar
  73. 73.
    Morcillo, G. and de la Torre, C., The Effect of RNA Synthesis Inhibitors on Prenucleolar Bodies, Experientia, 1980, vol. 36, pp. 836–837.PubMedGoogle Scholar
  74. 74.
    Morcillo, G., de la Torre, C., and Gimrenez-Martin, G., Nucleolar Transcription during Plant Mitosis, Exp. Cell Res., 1976, vol. 102, pp. 311–316.PubMedGoogle Scholar
  75. 75.
    Mosgoeller, W., Nucleolar Ultrastructure in Vertebrate, in: The Nucleolus, New York: Kluwer Academic/Plenium Publishers, 2004, pp. 10–20.Google Scholar
  76. 76.
    Mukhar’yamova, K.Sh., Dudnik, O.A., Speranskii, A.I., and Zatsepina, O.V., Comparative Localization of Major Nucleolar Proteins Fibrillarin and B23 in Dividing Mammalian Cells, Biol. Membrane, 1998, vol. 15, no. 6, pp. 657–669.Google Scholar
  77. 77.
    Mukhar’yamova, K.Sh. and Zatsepina, O.V., Visualization of Ribosomal Genes Transcription in SPEV Culture Cells Using Bomouridine Triphosphate, Tsitologiia, 2001, vol. 43, pp. 792–796.Google Scholar
  78. 78.
    Nazar, R.N., Ribosomal RNA Processing and Ribosome Biogenesis in Eukaryotes, IUBMB Life, 2004, vol. 56, pp. 457–465.PubMedGoogle Scholar
  79. 79.
    Niiya, F., Xie X., Lee, K.S., Inoue, H., and Miki, T., Inhibition of Cyclin-Dependent Kinase 1 Induces Cytokinesis without Chromosome Segregation in an ECT2 and MgcRacGAP-Dependent Manner, J. Biol. Chem., 2005, vol. 280, pp. 36502–36509.PubMedGoogle Scholar
  80. 80.
    Noel, J.S., Dewey, W.C., Abel, J.H., and Thompson, R.P., Ultrastructure of the Nucleolus during the Chinese Hamster Cell Cycle, J. Cell Biol., 1971, vol. 49, pp. 830–847.PubMedGoogle Scholar
  81. 81.
    Ochs, R. L. and Busch, H., Further Evidence that Phosphoprotein C23 (110 kD/pI 5.1) is the Nucleolar Silver Staining Protein, Exp. Cell Res., 1984, vol. 152, pp. 260–265.PubMedGoogle Scholar
  82. 82.
    Ochs, R.L., Lischwe, M., O’Leary, P., and Busch, H., Localization of Nucleolar Phosphoproteins B23 and C23 during Mitosis, Exp. Cell Res., 1983, vol. 146, pp. 139–149.PubMedGoogle Scholar
  83. 83.
    Ochs, R.L., Lischwe, M., Spohn, W.N., and Busch, H., Fibrillarin: a New Protein of the Nucleolus Identified by Autoimmune Sera, Biol. Cell, 1985a, vol. 54, pp. 123–133.PubMedGoogle Scholar
  84. 84.
    Ochs, R.L., Lischwe, M.A., Shen, E., Carroll, R.E., and Busch, H., Nucleologenesis: Composition and Fate of Prenucleolar Bodies, Chromosoma, 1985b, vol. 92, pp. 330–336.PubMedGoogle Scholar
  85. 85.
    Okuwaki, M., Tsujimoto, M., and Nagata, K., The RNA Binding Activity of a Ribosome Biogenesis Factor, Nucleophosmin/B23, is Modulated by Phosphorylation with a Cell Cycle-Dependent Kinase and by Association with Its Subtype, Mol. Biol. Cell, 2002, vol. 13, pp. 2016–2030.PubMedGoogle Scholar
  86. 86.
    Olson, M.O. and, Dundr, M., The Moving Parts of the Nucleolus, Histochem. Cell Biol., 2005, vol. 123, pp. 203–216.PubMedGoogle Scholar
  87. 87.
    Olson, M.O., Hingorani, K., and Szebeni, A., Conventional and Nonconventional Roles of the Nucleolus, Int. Rev. Cytol., 2002, vol. 219, pp. 199–266.PubMedGoogle Scholar
  88. 88.
    Paweletz, N. and Risueño, M.C., Transmission Electron Microscopic Studies on the Mitotic Cycle of Nucleolar Proteins Impregnated with Silver, Chromosoma, 1982, vol. 85, pp. 261–273.PubMedGoogle Scholar
  89. 89.
    Peter, M., Nakagawa, J., Doree, M., Labbe, J.C., and Nigg, E.A., Identification of Major Nucleolar Proteins as Candidate Mitotic Substrates of cdc2 Kinase, Cell, 1990, vol. 60, pp. 791–801.PubMedGoogle Scholar
  90. 90.
    Phillips, S.G., Repopulation of the Postmitotic Nucleolus by Preformed RNA, J. Cell Biol., 1972, vol. 53, pp. 611–623.PubMedGoogle Scholar
  91. 91.
    Piñol-Roma, S., Association of Nonribosomal Nucleolar Proteins in Ribonucleoprotein Complexes during Interphase and Mitosis, Mol. Biol. Cell, 1999, vol. 10, pp. 77–90.PubMedGoogle Scholar
  92. 92.
    Polyakov, V.Y. and Chentsov, Y.S., Electron Microscopic Detection of Chromosome Matrix with Its Natural Loosening, Dokl. Acad. Nauk, 1968, vol. 182, no. 2, pp. 205–208.Google Scholar
  93. 93.
    Puvion-Dutilleul, F., Mazan, S., Nicoloso, M., Pichard, E., Bachellerie, J.-P., and Puvion, E., Alterations of Nucleolar Ultrastructure and Ribosome Biogenesis by Actinomycin D. Implications for U3 snRNP Function, Eur. J. Cell Biol., 1992, vol. 58, pp. 49–162.Google Scholar
  94. 94.
    Roussel, P. and, Hernandez-Verdun, D., Identification of Ag-NOR Proteins, Markers of Proliferation Related to Ribosomal Gene Activity, Exp. Cell Res. 1994, vol. 214, pp. 65–472.Google Scholar
  95. 95.
    Roussel, P., Andre, C., Comai, L., and Hernandez-Verdun, D., The rDNA Transcription Machinery is Assembled during Mitosis in Active NORs and Absent in Inactive NORs, J. Cell Biol., 1996, vol. 133, pp. 235–246.PubMedGoogle Scholar
  96. 96.
    Rubbi, C.P. and Milner, J., Disruption of the Nucleolus Mediates Stabilization of p53 in Response to DNA Damage and Other Stresses, EMBO J., 2003, vol. 22, pp. 6068–6077.PubMedGoogle Scholar
  97. 97.
    Savino, T.M., Bastos, R., Jansen, E., and Hernandez-Verdun, D., The Nucleolar Antigen Nop52, the Human Homologue of the Yeast Ribosomal RNA Processing RRP1, is Recruited at Late Stages of Nucleologenesis, J. Cell Sci., 1999, vol. 112, pp. 1889–1900.PubMedGoogle Scholar
  98. 98.
    Savino, T.M., Gebrane-Younes, J., De Mey, J., Sibarita, J.B., and Hernandez-Verdun, D., Nucleolar Assembly of the rRNA Processing Machinery in Living Cells, J. Cell Biol., 2001, vol. 153, pp. 1097–1110.PubMedGoogle Scholar
  99. 99.
    Scheer, U. and Benavente, R., Functional and Dynamic Aspects of the Mammalian Nucleolus, Bio. Essays, 1990, vol. 12, pp. 14–21.Google Scholar
  100. 100.
    Scheer, U. and Hock, R., Structure and Function of the Nucleolus, Curr. Opin. Cell Biol., 1999, vol. 11, pp. 385–390.PubMedGoogle Scholar
  101. 101.
    Scheer, U. and Rose, K.M., Localization of RNA Polymerase I in Interphase Cells and Mitotic Chromosomes by Light and Electron Microscopic Immunocytochemistry, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 1431–1435.PubMedGoogle Scholar
  102. 102.
    Scheer, U., Hugle, B., Hazan, R., and Rose, K.M., Drug-Induced Dispersal of Transcribed rRNA Genes and Transcriptional Products: Immunolocalization and Silver Staining of Different Nucleolar Components in Rat Cells Treated with 5,6-dichloro-beta-D Ribofuranosylbenzimidazole, J. Cell Biol., 1984, vol. 99, pp. 672–679.PubMedGoogle Scholar
  103. 103.
    Scheer, U., Trendelenburg, M F., and Franke W.W., Effects of Actinomycin D on the Association of Newly Formed Ribonucleoproteins with the Cistrons of Ribosomal RNA in Triturus Oocytes, J. Cell Biol., 1975, vol. 65, pp. 163–179.PubMedGoogle Scholar
  104. 104.
    Sirri, V., Hernandez-Verdun, D., and Roussel, P., Cyclin-Dependent Kinases Govern Formation Maintenance of the Nucleolus, J. Cell Biol., 2002, vol. 156, pp. 969–981.PubMedGoogle Scholar
  105. 105.
    Sirri, V., Roussel, P., and Hernadez-Werdun, D., The Mitotically Phosphorylated Form of the Transcription Termination Factor TTF-1 Is Associated with the Repressed rDNA Transcription Machinery, J. Cell Sci., 1999, vol. 112, pp. 3259–3268.PubMedGoogle Scholar
  106. 106.
    Sirri, V., Roussel, P., and Hernandez-Verdun, D., In vivo Release of Mitotic Silencing of Ribosomal Gene Transcription Does Not Give Rise to Precursor Ribosomal RNA Processing, J. Cell Biol., 2000, vol. 148, pp. 259–270.PubMedGoogle Scholar
  107. 107.
    Smetana, K. and Busch, H., The Nucleolus and Nucleolar DNA, in: The Cell Nucleus, New York: Academic, 1974, pp. 73–147.Google Scholar
  108. 108.
    Sollner-Webb, B., Tycowski, K.T., and Steitz, J.A., Ribosomal RNA Processing in Eukaryotes, in: Ribosomal RNA: Structure, Evolution, Processing, and Function in Protein Biosynthesis, New York: CRC, 1996, pp. 469–490.Google Scholar
  109. 109.
    Stevens, B., The Fine Structure of the Nucleolus during Mitosis in the Grasshopper Neuroblast Cell, J. Cell Biol., 1965, vol. 24, pp. 349–368.PubMedGoogle Scholar
  110. 110.
    Stockert, J.C., Fernandez-Gomez, M.E., Gimenez-Martin, G., and Sanchez-Lopez, J.F., Organization of Argyrophilic Nucleolar Material Throughout the Division Cycle of Meristematic Cells, Protoplasma, 1970, vol. 69, pp. 265–78.PubMedGoogle Scholar
  111. 111.
    Tamm, I., Hand, R., and Caliguiri, L.A., Action of Dichlorobenzimidazole Riboside on RNA Synthesis in L-929 and HeLa Cells, J. Cell Biol., 1976, vol. 69, pp. 229–240.PubMedGoogle Scholar
  112. 112.
    Thiry, M. and Lafontaine, D.L., Birth of a Nucleolus: the Evolution of Nucleolar Compartments, Trends Cell Biol., 2005, vol. 15, pp. 194–199.PubMedGoogle Scholar
  113. 113.
    Tokuyama, Y., Horn, H.F., Kawamura, K., Tarapore, P., and Fukasawa, K., Specific Phosphorylation of Nucleophosmin on Thr(199) by Cyclin-Dependent Kinase 2-Cyclin E and Its Role in Centrosome Duplication, J. Biol. Chem., 2001, vol. 276, pp. 21529–21537.PubMedGoogle Scholar
  114. 114.
    Tschochner, H. and Hurt, E., Pre-Ribosomes on the Road from the Nucleus to the Cytoplasm, Trends Cell Biol., 2003, vol. 13, pp. 255–263.PubMedGoogle Scholar
  115. 115.
    Vandelaer, M. and Thiry, M., The Phosphoprotein pp135 Is an Essential Constituent of the Fibrillar Components of Nucleoli and of Coiled Bodies, Histochem. Cell Biol., 1998, vol. 110, pp. 169–177.PubMedGoogle Scholar
  116. 116.
    Verheijen, R., Kuijpers, H.J.H., van Driel, R., Beck, J.L.M., van Dierendonck, J.H., Brakenhoff, G.J., and Ramaekers, F.C.S., Ki-67 Detects a Nuclear Matrix-Associated Proliferation-Related Antigen II. Localization in Mitotic Cells and Association with Chromosomes, J. Cell Sci., 1989, vol. 92, pp. 531–540.PubMedGoogle Scholar
  117. 117.
    Voit, R., Hoffmann, M., and, Grummt, I., Phosphorylation by G1-Specific cdk-Cyclin Complexes Activates the Nucleolar Transcription factor UBF, EMBO J., 1999, vol. 18, pp. 1891–1899.PubMedGoogle Scholar
  118. 118.
    Weisenberger, D. and Scheer, U., A possible Mechanism for the Inhibition of Ribosomal RNA Gene Transcription during Mitosis, J. Cell Biol., 1995, vol. 129, pp. 561–575.PubMedGoogle Scholar
  119. 119.
    Weisenberger, D., Scheer, U., and Benavente, R., The DNA Topoisomerase I Inhibitor Camptothecin Blocks Postmitotic Reformation of Nucleoli in Mammalian Cells, Eur. J. Cell Biol., 1993, vol. 61, pp. 189–192.PubMedGoogle Scholar
  120. 120.
    Yasuda, Y. and Maul, G.G., A Nucleolar Auto-Antigen Is Part of a Major Chromosomal Surface Component, Chromosoma, 1990, vol. 99, pp. 152–160.PubMedGoogle Scholar
  121. 121.
    Zatsepina, O.V., Chelidze, P.V., and Chentsov, Y.S., The Changes in Number and Size of Fibrillar Centers with Nucleoli Inactivation during Erythropoiesis, Ontogenes, 1989b, vol. 1, pp. 40–46.Google Scholar
  122. 122.
    Zatsepina, O.V., Severova, E.L., Dyban, A.P., and Chentsov, Y.S., Ultrastructure and Argyrophilic Properties of Nucleolargenetic and Centromere Chromosome Regions in the Early Mouse Embryogenesis, Tsitologiia, 1989a, vol. 29, pp. 626–632.Google Scholar
  123. 123.
    Zatsepina, O.V., Dudnic, O.A., Chentsov, Y.S., Thiry, M., Spring, H., and Trendelenburg, M.F., Reassembly of Functional Nucleoli Following in situ Unraveling by Low-Ionic-Strength Treatment of Cultured Mammalian Cells, Exp. Cell Res., 1997a, vol. 233, pp. 155–168.PubMedGoogle Scholar
  124. 124.
    Zatsepina, O.V., Dudnic, O.A., Todorov, I.T., Thiry, M., Spring, H., and Trendelenburg, M.F., Experimental Induction of Prenucleolar Bodies (PNBs) in Interphase Cells: Interphase PNBs Show Similar Characteristics as Those Typically Observed at Telophase of Mitosis in Untreated Cells, Chromosoma, 1997b, vol. 105, pp. 418–430.PubMedGoogle Scholar
  125. 125.
    Zatsepina, O.V., Hozak, P., Babajanyan, D., and Chentsov, Y., Quantitative Ultrastructural Study of Nucleolus-Organizing Regions at Some Stages of the Cell Cycle (G0-Period, G2-Period, Mitosis), Biol. Cell., 1988, vol. 62, pp. 211–218.PubMedGoogle Scholar
  126. 126.
    Zatsepina, O.V., Schofer, C., Weipoltshammer, K., Mosgoeller, W., Almeder, M., Stefanova, V.N., Jordan, E.G., and Wachtler, F., The RNA Polymerase I Transcription Factor UBF and rDNA Are Located at the Same Major Sites in Both Interphase and Mitotic Pig Embryonic Kidney (PK) Cells, Cytogenet. Cell Genet., 1996, vol. 73, pp. 274–278.PubMedGoogle Scholar
  127. 127.
    Zatsepina, O.V., Todorov, I.T., Philipova, R.N., Krachmarov, C.P., Trendelenburg, M.F., and Jordan, E.G., Cell Cycle-Dependent Translocations of a Major Nucleolar Phosphoprotein, B23, and Some Characteristics of Its Variants, Eur. J. Cell Biol., 1997c, vol. 73, pp. 58–70.PubMedGoogle Scholar
  128. 128.
    Zatsepina, O.V., Voit, R., Grummt I., Spring, H., Semenov, M.V., and Trendelenburg, M.F., The RNA Polymerase I-Specific Transcription Initiation Factor UBF Is Associated with Transcriptionally Active and Inactive Ribosomal Genes, Chromosoma, 1993, vol. 102, pp. 599–611.PubMedGoogle Scholar
  129. 129.
    Zhang, H., Shi, X., Paddon, H., Hampong, M., Dai, W., and Pelech, S., B23/nucleophosmin Serine 4 Phosphorylation Mediates Mitotic Functions of Polo-Like Kinase 1, J. Biol. Chem., 2004, vol. 279, pp. 35726–35734.PubMedGoogle Scholar
  130. 130.
    Zharskaya, O.O. and Zatsepina, O.V., Assembly of Nucleolus-Derived Foci in Various Cultured Mammalian Cells during Mitosis, Tsitologiia, 2005a, vol. 47, pp. 780–788.Google Scholar
  131. 131.
    Zharskaya, O.O. and Zatsepina, O.V., Premature Assembly of Nucleolus-Derived Foci Indiced by a Reversible Hypotonic Shock in Metaphase CV1 and HeLa Cells, Tsitologiia, 2005b, vol. 47, pp. 874–881.Google Scholar
  132. 132.
    Zhu, Y., Lu, D., and DiMario, P., Nucleolin, Defective for MPF Phosphorylation, Localizes Normally during Mitosis and Nucleologenesis, Histochem. Cell Biol., 1999, vol. 111, pp. 477–487.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.A.N. Belozersky Institute of Physical and Chemical BiologyMoscow State UniversityRussia
  2. 2.Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussia

Personalised recommendations