Skip to main content
Log in

A Numerical Model of Inflammation Dynamics in the Core of Myocardial Infarction

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Mathematical simulation is carried out of the dynamics of an acute inflammatory process in the central zone of necrotic myocardial damage. Some mathematical model of the dynamics of the monocyte-macrophages and cytokines is presented and the numerical algorithm is developed for solving an inverse coefficient problem for a stiff nonlinear system of ordinary differential equations (ODEs). The methodological studies showed that the solution obtained by the genetic BGA algorithm agrees well with the solutions obtained by the gradient and ravine methods. Adequacy of the simulation results is confirmed by their qualitative and quantitative agreement with the laboratory data on the dynamics of inflammatory process in the case of infarction in the left ventricle of the heart of a mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Thygesen, J. S. Alpert, and H. D. White, “Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal Definition of Myocardial Infarction,” European Heart J. 28, 2525–2538 (2007).

    Article  Google Scholar 

  2. T. Baron, K. Hambraeus, J. Sundström, D. Erlinge, T. Jernberg, and B. Lindahl, “Type 2 Myocardial Infarction in Clinical Practice,” Heart 101 (2), 101–106 (2015).

    Article  Google Scholar 

  3. L. M. Nepomnyashchikh, E. L. Lushnikova, and D. E. Semenov, Regenerative-Plastic Heart Failure: Morphological Basics and Molecular Mechanisms (Izd. Ross. Akad. Med. Nauk, Moscow, 2003) [in Russian].

    Google Scholar 

  4. S. Frantz and M. Nahrendorf, “Cardiac Macrophages and Their Role in Ischemic Heart Disease,” Cardiovascular Res. 102, 240–248 (2014).

    Article  Google Scholar 

  5. A. A. Yarilin, Immunology (GEOTAR-Media, Moscow, 2010) [in Russian].

    Google Scholar 

  6. C. Troidl et al., “Classically and Alternatively Activated Macrophages Contribute to Tissue Remodelling after Myocardial Infarction,” J. Cell. Mol. Med. 13 (9B), 3485–3496 (2009).

    Article  Google Scholar 

  7. A. Gombozhapova et al., “Macrophage Activation and Polarization in Post-Infarction Cardiac Remodeling,” J. Biomedical Sci. 24 (13), 11 (2017).

    Google Scholar 

  8. T. Anzai, “Post-Infarction Inflammation and Left Ventricular Remodeling,” Circulation J. 77, 580–587 (2013).

    Article  Google Scholar 

  9. F. Yang et al., “Myocardial Infarction and Cardiac Remodelling in Mice,” Exp. Physiology. 87 (5), 547–555 (2002).

    Article  Google Scholar 

  10. A. Saxena, W. Chen, Y. Su, V. Rai, O. U. Uche, N. Li, and N. G. Frangogiannis, “IL-1 Induces Proinflammatory Leukocyte Infiltration and Regulates Fibroblast Phenotype in the Infarcted Myocardium,” J. Immunol. 191, 4838–4848 (2013).

    Article  Google Scholar 

  11. O. F. Voropaeva and Yu. I. Shokin, “Numerical Modeling in Medicine: Statements of Some Problems and Computational results,” Vychisl. Tekhnol. 17 (4), 29–55 (2012).

    Google Scholar 

  12. R. L. Winslow, S. Cortassa, B. O’Rourke, Y. L. Hashambhoy, J. J. Rice, and J. L. Greenstein, “Integrative Modeling of the Cardiac Ventricular Myocyte,” WIREs Syst. Biol. Med. 3, 392–413 (2011).

    Article  Google Scholar 

  13. L. C. Lee, G. S. Kassab, and J. M. Guccione, “Mathematical Modeling of Cardiac Growth and Remodeling,” WIREs Syst. Biol. Med. 8, 211–226 (2016).

    Article  Google Scholar 

  14. V. E. Shlyakhover, N. I. Yabluchanskii, S. V. Eremenko, and V. A. Zabolotskii, “Mathematical Model of Cardiac Wall Strength in Zone of Myocardial Infarction for Different Conditions of Cicatrization of It,” Krovoobrashchenie 21 (4), 3–6 (1988).

    Google Scholar 

  15. O. M. Belotserkovskii, Application of Mathematical Approaches and Computers in Medicine in Computational Mechanics. Modern Problems and Results (Nauka, Moscow, 1991), pp. 148–172.

    Google Scholar 

  16. O. M. Belotserkovskii, et al., “Prediction of Clinical Outcome of Myocardial Infarction,” Dokl. Akad. Nauk SSSR 261 (6), 1307–1310 (1981).

    MathSciNet  Google Scholar 

  17. O. M. Belotserkovskii, et al., “Mathematical Analysis of Regularity of Clinical Course of Myocardial Infarction,” in Problems of Cybernetics. Application of Mathematical Approach and Computer Techniques in Cardiology and Surgery (VINITI, Moscow, 1983), pp. 3–15.

    Google Scholar 

  18. O. M. Belotserkovskii, A. V. Vinogradov, and A. S. Glazunov, “Mathematical Modeling of Myocardial Infarction Epigenetics,” in Problems of Cybernetics. Bioinformatics and Its Applications (VINITI, Moscow, 1988), pp. 3–22.

    Google Scholar 

  19. O. M. Belotserkovskii, A. V. Vinogradov, and A. S. Glazunov, “Method of Early Prediction of Acute Myocardial Infarction and Postinfarction Cardiosclerosis,” in Informatics and Medicine (Nauka, Moscow, 1997), pp. 72–119.

    Google Scholar 

  20. L. Y. D. Crapts, Modeling an Angiogenesis Treatment after a Myocardial Infarction. Master of Science Thesis. (Delft Technical Univ., Delft, 2012).

    Google Scholar 

  21. E. Berberoglu and S. Goktepe, “Computational Modeling of Myocardial Infarction,” Procedia IUTAM 12, 52–61 (2015).

    Article  Google Scholar 

  22. J. Lin et al., “Age-Related Cardiac Muscle Sarcopenia: Combining Experimental and Mathematical Modeling to Identify Mechanisms,” Exp. Gerontol. 43, 296–306 (2008).

    Article  Google Scholar 

  23. Y.-F. Jin et al., “Combining Experimental and Mathematical Modeling to Reveal Mechanisms of Macrophage-Dependent Left Ventricular Remodeling,” BMC Systems Biology 5 (60), 14 (2011).

    Google Scholar 

  24. Y. Wang, Y. Jin, Y. Ma, G. Halade, and M. Linsey, “Mathematical Modeling of Macrophage Activation in Left Ventricular Remodeling Post-Myocardial Infarction,” in 2011 IEEE International Workshop on Genomic Signal Processing and Statistics, December 4–6, 2011 (San Antonio, 2011), pp. 202–205.

    Google Scholar 

  25. Y. Wang et al., “Mathematical Modeling and Stability Analysis of Macrophage Activation in Left Ventricular Remodeling Post-Myocardial Infarction,” BMC Genomics 13 (21) 8 (2012).

    Google Scholar 

  26. O. F. Voropaeva, N. D. Plotnikov, and Ch. A. Tsgoev, “Numerical Simulation of Cell Death During Ischemia,” in Proceedings of International Conference “Modern Problems of Mathematics, Informatics, and Mechanics,” Voronezh, September 12–15, 2016 (Nauchno-Issledov. Publ., Voronezh, 2016), pp. 221–223.

    Google Scholar 

  27. N. D. Plotnikov, Ch. A. Tsgoev, and O. F. Voropaeva, “Mathematical Modeling of Cell Death Processes in a Living Organism,” in Proceedings of International Conference ‘Marchuk Scientific Readings—2017,’ Novosibirsk, June 25–July 14, 2017 (Inst. Vychisl. Mat. Mat. Geofiz., Novosibirsk, 2017), pp. 697–704.

    Google Scholar 

  28. I. Sallaberger et al., “The Design of Francis Turbine Runners by 3D Euler Simulations Coupled to a Breeder Genetic Algorithm,” in Proceedings of 20 IAHR Symposium on Hydraulic Machinery and Systems, August 6–9, Charlotte, 2000 (2000), p. 10.

  29. S. G. Cherny, D. V. Chirkov, V. N. Lapin, V. A. Skorospelov, and S. V. Sharov, Numerical Modeling of Flows in Turbomachines (Nauka, Novosibirsk, 2006) [in Russian].

    MATH  Google Scholar 

  30. Yu. I. Neimark, Mathematical Modeling as Science and as Art (Izd. Nizhegorod. Gos. Univ., Nizhni Novgorod, 2010) [in Russian].

    Google Scholar 

  31. E. Oran and J. Boris, Numerical Modeling of Reacting Flows (Mir, Moscow, 1990) [in Russian].

    Google Scholar 

  32. L. Lyung, System Identification. The Theory for a User (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  33. H. Miao, X. Xia, A.-S. Perelson, and H. Wu, “On Identifiability of Nonlinear ODE models and Applications in Viral Dynamics,” SIAM Rev. Soc. Ind. Appl. Math. 53 (1), 3–39 (2011).

    MathSciNet  MATH  Google Scholar 

  34. S. I. Kabanikhin, D. A. Voronov, A. A. Grozd’, and O.I. Krivirot’ko, “Possibility of Identification of Mathematical Models of Medical Biology,” Vavilov. Zh. Genetiki i Selektsii 19 (6), 738–744 (2015).

    Google Scholar 

  35. S. I. Kabanikhin, A. I. Il’in, and O. I. Krivirot’ko, “On Parameter Definition of the Models Describing by Systems of Nonlinear Differential Equations,” Sibir. Elektr. Mat. Izv. 11, 62–76 (2014).

    Google Scholar 

  36. I. M. Gel’fand and M. L. Tsetlin, “On Some Methods of Control for Complex Systems,” Uspekhi Mat. Nauk 17 (1), 3–25 (1962).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. F. Voropaeva or Ch. A. Tsgoev.

Additional information

Russian Text © The Author(s), 2019, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2019, Vol. XXII, No. 2, pp. 13–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropaeva, O.F., Tsgoev, C.A. A Numerical Model of Inflammation Dynamics in the Core of Myocardial Infarction. J. Appl. Ind. Math. 13, 372–383 (2019). https://doi.org/10.1134/S1990478919020182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919020182

Keywords

Navigation