Skip to main content
Log in

Flow Regimes in a Flat Elastic Channel in Presence of a Local Change of Wall Stiffness

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Some mathematical model is proposed of a flow in a long channel with compliant walls. This model allows us to describe both stationary and nonstationary (self-oscillatory) regimes of motion. The model is based on a two-layer representation of the flow with mass exchange between the layers. Stationary solutions are constructed and their structure is under study. We perform the numerical simulation of various flow regimes in presence of a local change of the wall stiffness. In particular, the solutions are constructed that describe the formation of a monotonic pseudoshock and the development of nonstationary self-oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Pedley, The Fluid Mechanics of Large Blood Vessels (Cambridge University Press, Cambridge, 1980; Mir, Moscow, 1983).

    Book  MATH  Google Scholar 

  2. M. Heil and O. E. Jensen, “Flows in Deformable Tubes and Channels: Theoretical Models and Biological Applications,” in Flow Past Highly Compliant Boundaries and in Collapsible Tubes (Springer, Heidelberg, 2003), pp. 15–49.

    Chapter  Google Scholar 

  3. L. Formaggia, D. Lamponi, and A. Quarteroni, “One-Dimensional Models for Blood Flow in Arteries,” J. Engrg. Math. 47, 251–276 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. H. Shapiro, “Steady Flow in Collapsible Tubes,” J. Biomech. Engrg. 99 (3), 126–147 (1977).

    Article  Google Scholar 

  5. C. Cancelli and T. J. Pedley, “A Separated-Flow Model for Collapsible Tube Oscillations,” J. Fluid Mech. 157, 375–404 (1985).

    Article  Google Scholar 

  6. B. S. Brook, S. A. E. G. Falle, and T. J. Pedley, “Numerical Solutions for Unsteady Gravity-Driven Flows in Collapsible Tubes: Evolution and Roll-Wave Instability of a Steady State,” J. Fluid Mech. 396, 223–256 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. A. Chesnokov and V. Yu. Liapidevskii, “Roll Wave Structure in Long Tubes with Compliant Walls,” Trudy Mat. Inst. Steklov. 300, 205–215 (2018) [Proc. Steklov Inst. Math. 300, 196–205 (2018)].

    MathSciNet  MATH  Google Scholar 

  8. V. Yu. Liapidevskii and A. A. Chesnokov, “Mixing Layer under a Free Surface,” Prikl. Mekh. Tekhn. Fiz. 55 (2), 127–140 (2014) [J. Appl. Mech. Techn. Phys. 55 (2), 299–310 (2014)].

    MathSciNet  MATH  Google Scholar 

  9. I. I. Lipatov, V. Yu. Liapidevskii, and A. A. Chesnokov, “An Unsteady Pseudoshock Model for Barotropic Gas Flow,” Dokl. Akad. Nauk 466 (5), 545–549 (2016) [Dokl. Phys. 61 (2), 82–86 (2016)].

    MathSciNet  Google Scholar 

  10. V. Yu. Liapidevskii and V. M. Teshukov, Mathematical Models of Long Waves Propagation in Inhomogeneous Liquid (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  11. A. A. Chesnokov, “Axisymmetric Vortex Fluid Flow in a Long Elastic Tube,” Prikl. Mekh. Tekhn. Fiz. 42 (4), 76–87 (2001) [J. Appl. Mech. Techn. Phys. 42 (4), 628–637 (2001)].

    MathSciNet  MATH  Google Scholar 

  12. V. M. Teshukov, “Gas-Dynamic Analogy for Vortex Free-Boundary Flows,” Prikl. Mekh. Tekhn. Fiz. 48 (3), 8–15 (2007) [J. Appl. Mech. Techn. Phys. 48 (3), 628–637 (2007)].

    MathSciNet  MATH  Google Scholar 

  13. A. A. Townsend, The Structure of Turbulent Shear Flow (Univ. Press, Cambridge, 1956).

    MATH  Google Scholar 

  14. P. Bradshaw, D. H. Ferriss, and N. P. Atwell, “Calculation of Boundary-Layer Development Using the Turbulent Energy Equation,” J. Fluid Mech. 28, 593–616 (1967).

    Article  Google Scholar 

  15. H. Nessyahu and E. Tadmor, “Nonoscillatory Central Differencing Schemes for Hyperbolic Conservation Laws,” J. Comp. Phys. 87, 408–463 (1990).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Liapidevskii, A. K. Khe or A. A. Chesnokov.

Additional information

Russian Text © The Author(s), 2019, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2019, Vol. XXII, No. 2, pp. 37–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liapidevskii, V.Y., Khe, A.K. & Chesnokov, A.A. Flow Regimes in a Flat Elastic Channel in Presence of a Local Change of Wall Stiffness. J. Appl. Ind. Math. 13, 270–279 (2019). https://doi.org/10.1134/S199047891902008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199047891902008X

Keywords

Navigation