Skip to main content
Log in

Estimating the Stability Radius of an Optimal Solution to the Simple Assembly Line Balancing Problem

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

The simple assembly line balancing problem (SALBP) is considered. We describe the special class of problems with an infinitely large stability radius of the optimal balance. For other tasks we received the lower and the upper reachable estimates of the stability radius of optimal balances in the case of an independent perturbation of the parameters of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Gordeev, “Comparison of Three Approaches to Studying Stability of Solutions to Problems of Discrete Optimization and Computational Geometry,” Diskretn. Anal. Issled. Oper. 22 (3), 18–35 (2015) [J. Appl. Indust. Math. 9 (3), 358–366 (2015)].

    MATH  Google Scholar 

  2. V. A. Emelichev and K. G. Kuzmin, “A General Approach to Studying the Stability of a Pareto Optimal Solution of a Vector Integer Linear Programming Problem,” Diskretn. Mat. 19 (3), 79–83 (2007) [Discrete Math. Appl. 17 (4), 349–354 (2007)].

    Article  MATH  Google Scholar 

  3. V. A. Emelichev and K. G. Kuzmin, “On a Type of Stability of a Milticriteria Integer Linear Programming Problem in the Case of a Monotone Norm,” Izv. RAN Teor. Sist. Upravleniya No. 5, 45–51 (2007) [J. Comput. Syst. Sci. Int. 46 (5), 714–720 (2007)].

  4. V. A. Emelichev and K. G. Kuzmin, “Stability Analysis of the Efficient Solution to a Vector Problem of a Maximum Cut,” Diskretn. Anal. Issled. Oper. 20 (4), 27–35 (2013).

    MathSciNet  Google Scholar 

  5. V. A. Emelichev and D. P. Podkopaev, “Stability and Regularization of Vector Integer Linear Programming Problems,” Diskretn. Anal. Issled. Oper. Ser. 2, 8 (1), 47–69 (2001).

    MathSciNet  MATH  Google Scholar 

  6. V. A. Emelichev and D. P. Podkopaev, “Quantitative Stability Analysis for Vector Problems of 0–1 Programming,” Discrete Optim. 7 (1–2), 48–63 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. A. Emelichev and Yu. V. Nikulin, “Strong Stability Measures for Multicriteria Quadratic Integer Programming Problem of Finding Extremum Solutions,” Comput. Sci. J.Mold. 26 (2), 115–125 (2018).

    MathSciNet  Google Scholar 

  8. V. A. Emelichev and Yu. V. Nikulin, “Aspects of Stability for Multicriteria Quadratic Problems of Boolean Programming,” Bul. Acad. Stiinte Repub. Mold. Mat., No. 2, 30–40 (2018).

  9. K. G. Kuzmin, Yu. V. Nikulin, and M. Mäkelä, “On Necessary and Sufficient Conditions for Stability and Quasistability in Combinatorial Multicriteria Optimization,” Control Cybernet. 46 (4), 361–382 (2017).

    MathSciNet  MATH  Google Scholar 

  10. V. A. Emelichev and K. G. Kuzmin, “Stability Criteria in Vector Combinatorial Bottleneck Problems in Terms of Binary Relations,” Kibernet. Sist. Anal. No. 3, 103–111 (2008) [Cybernet. Syst. Anal. 44 (3), 397–404 (2008)].

  11. K. G. Kuzmin, “A General Approach to the Calculation of Stability Radii for the Max-Cut Problem with Multiple Criteria,” Diskretn. Anal. Issled. Oper. 22 (5), 30–51 (2015) [J. Appl. Indust. Math. 9 (4), 527–539 (2015)].

    Google Scholar 

  12. I. V. Sergienko and V. P. Shilo, Discrete Optimization Problems: Problems, Solution Methods, Research (Naukova Dumka, Kiev, 2003) [in Russian].

    Google Scholar 

  13. T.-S. Lai, Yu. N. Sotskov, A. B. Dolgui, and A. Zatsiupa, “Stability Radii of Optimal Assembly Line Balances with a Fixed Workstation Set,” Int. J. Prod. Econ. 182, 356–371 (2016).

    Article  Google Scholar 

  14. A. Scholl, Balancing and Sequencing of Assembly Lines (Physica, Heidelberg, 1999).

    Book  Google Scholar 

  15. E. E. Gurevsky, O. Battaïa, and A. B. Dolgui, “Balancing of Simple Assembly Lines under Variations of Task Processing Times,” Ann. Oper. Res. 201, 265–286 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Chica, O. Gordon, S. Damas, and J. Bautista, “A Robustness Information and Visualization Model for Time and Space Assembly Line Balancing under Uncertain Demand,” Internat. J. Prod. Econ. 145, 761–772 (2013).

    Article  Google Scholar 

  17. A. Otto, C. Otto, and A. Scholl, “Systematic Data Generation and Test Design for Solution Algorithms on the Example of SALBPGen for Assembly Line Balancing,” European J. Oper. Res. 228, 33–45 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. Yu. N. Sotskov, A. B. Dolgui, and M.-C. Portmann, “Stability Analysis of Optimal Balance for Assembly Line with Fixed Cycle Time,” European J. Oper. Res. 168 (3), 783–797 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu. N. Sotskov, A. B. Dolgui, N. Yu. Sotskova, and F. Werner, “Stability of Optimal Line Balance with Given Station Set,” in Supply Chain Optimization (Springer, New York, 2005), pp. 135–149.

    Chapter  Google Scholar 

  20. E. E. Gurevsky, O. Battaïa, and A. B. Dolgui, “Stability Measure for a Generalized Assembly Line Balancing Problem,” Discrete Appl. Math. 161, 377–394 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu. N. Sotskov, A. B. Dolgui, T.-S. Lai, and A. Zatsiupa, “Enumerations and Stability Analysis of Feasible and Optimal Line Balances for Simple Assembly Lines,” Comput. Indust. Eng. 90, 241–258 (2015).

    Article  Google Scholar 

  22. K. G. Kuzmin and V. R. Haritonova, “The Measure of Stability for Solutions to a Simple Assembling Linear Balancing Problem SALBP-E,” in Proceedings of 10th International Conference “Discrete Models in the Theory of Control Systems,” Moscow, Russia, May 23–25, 2018 (MAKS Press, Moscow, 2018), pp. 175–178.

    Google Scholar 

  23. T.-S. Lai, Yu. N. Sotskov, and A. B. Dolgui, “The Stability Radius of an Optimal Line Balance with Maximum Efficiency for a Simple Assembly Line,” European J. Oper. Res. 274, 466–481 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Gamberini, A. Grassi, and B. Rimini, “A New Multiobjective Heuristic Algorithm for Solving the Stochastic Assembly Line Rebalancing Problem,” Internat. J. Prod. Econ. 102, 226–243 (2006).

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank an anonymous reviewer for the valuable comments which promote to a significant improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. G. Kuzmin or V. R. Haritonova.

Additional information

Russian Text © The Author(s), 2019, published in Diskretnyi Analiz i Issledovanie Operatsii, 2019, Vol. 26, No. 2, pp. 79–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, K.G., Haritonova, V.R. Estimating the Stability Radius of an Optimal Solution to the Simple Assembly Line Balancing Problem. J. Appl. Ind. Math. 13, 250–260 (2019). https://doi.org/10.1134/S1990478919020066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919020066

Keywords

Navigation