Skip to main content
Log in

A Contact Problem for a Plate and a Beam in Presence of Adhesion

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Under consideration is the problem of contact between a plate and a beam. It is assumed that no mutual penetration between the plate and the beam can occur, and so an appropriate nonpenetration condition is used. On the other hand, the adhesion of the bodies is taken into account which is characterized by a numerical adhesion parameter. We study the existence and uniqueness of a solution for the contact problem as well as the passage to the limit with respect to the adhesion parameter. The accompanying optimal control problem is investigated in which the adhesion parameter acts as a control parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Caffarelli, “Further Regularity for the Signorini Problem,” Comm. Partial Differential Equations 4 (9), 1067–1075 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Athanasopoulos and L. A. Caffarelli, “Optimal Regularity of Lower-Dimensional Obstacle Problems,” J. Math. Sci. 132 (3), 274–284 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Petrosyan, H. Shahgholian, and N. N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems (Amer. Math. Soc., Providence, 2012).

    Book  MATH  Google Scholar 

  4. L. A. Caffarelli and A. Friedman, “The Obstacle Problem for the Biharmonic Operator,” Ann. Sci. Norm. Super. Pisa, Cl. Sci., IV. Ser. 6 (1), 151–184 (1979).

    MathSciNet  MATH  Google Scholar 

  5. L. A. Caffarelli, A. Friedman, and A. Torelli, “The Two-Obstacle Problem for the Biharmonic Operator,” Pacific J. Math. 103 (3), 325–335 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Schild, “On the Coincidence Set in Biharmonic Variational Inequalities with Thin Obstacles,” Ann. Sci. Norm. Super. Pisa, Cl. Sci., IV.Ser. 13 (4), 559–616 (1986).

    MathSciNet  MATH  Google Scholar 

  7. G. Dal Maso and G. Paderni, “Variational Inequalities for the Biharmonic Operator with Varying Obstacles,” Ann. Mat. Pura Appl. 153 (1), 203–227 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. M. Khludnev and J. Sokolowski, Modelling and Control in Solid Mechanics (Birkhauser, Basel, 1997).

    MATH  Google Scholar 

  9. A. M. Khludnev, “On Unilateral Contact of Two Plates Aligned at Angle to Each Other,” J. Appl. Mech. Tech. Phys. 49 (4), 553–567 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. M. Khludnev and G. Leugering, “Unilateral Contact Problems for Two Perpendicular Elastic Structures,” Z. Anal. Anwend. 27 (2), 157–177 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. N. V. Neustroeva, “A Rigid Inclusion in the Contact Problem for Elastic Plates,” Sibir. Zh. Industr. Mat. 12 (4), 92–105 (2009) [J. Appl. Indust. Math. 4 (4), 526–538 (2010)].

    MathSciNet  MATH  Google Scholar 

  12. T. A. Rotanova, “Unilateral Contact Problem for Two Plates with a Rigid Inclusion in the Lower Plate,” J. Math. Sci. 188 (4), 452–462 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. M. Khludnev, K.-H. Hoffmann, and N. D. Botkin, “The Variational Contact Problem for Elastic Objects of Different Dimensions,” Sibir. Mat. Zh. 47 (3), 707–717 (2006) [Siberian Math. J. 47 (3), 584–593 (2006)].

    MATH  Google Scholar 

  14. A. M. Khludnev and A. Tani, “Unilateral Contact Problem for Two Inclined Elastic Bodies,” European J. Mech. A: Solids 27 (3), 365–377 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. I. Furtsev, “About the Contact of a Thin Obstacle and a Plate Containing a Thin Inclusion,” Sibir. Zh. Chist. Prikl. Mat. 17 (4), 94–111 (2017).

    MathSciNet  Google Scholar 

  16. A. I. Furtsev, “Differentiation of Energy Functional with Respect to Delamination Length in Problem of Contact between Plate and Beam,” Sibir. Elektr. Mat. Izv. 15, 935–949 (2018); http://semr.math.nsc.ru.

    MathSciNet  MATH  Google Scholar 

  17. A. M. Khludnev, “On Modeling Thin Inclusions in Elastic Bodies with a Damage Parameter,” Math. Mech. Solids. 2018; doi https://doi.org/10.1177/1081286518796472.

  18. A. M. Khludnev, “On Modeling Elastic Bodies with Defects,” Sibir. Electr. Mat. Izv. 15, 153–166 (2018); URL: http://semr.math.nsc.ru.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Furtsev.

Additional information

Russian Text © The Author(s), 2019, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2019, Vol. XXII, No. 2, pp. 105–117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtsev, A.I. A Contact Problem for a Plate and a Beam in Presence of Adhesion. J. Appl. Ind. Math. 13, 208–218 (2019). https://doi.org/10.1134/S1990478919020030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478919020030

Keywords

Navigation