Skip to main content
Log in

Application of Splitting Algorithms in the Method of Finite Volumes for Numerical Solution of the Navier–Stokes Equations

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

We generalize the splitting algorithms proposed earlier for the construction of efficient difference schemes to the finite volume method. For numerical solution of the Euler and Navier–Stokes equations written in integral form, some implicit finite-volume predictor-corrector scheme of the second order of approximation is proposed. At the predictor stage, the introduction of various forms of splitting is considered, which makes it possible to reduce the solution of the original system to separate solution of individual equations at fractional steps and to ensure some stability margin of the algorithm as a whole. The algorithm of splitting with respect to physical processes and spatial directions is numerically tested. The properties of the algorithm are under study and we proved its effectiveness for solving two-dimensional and three-dimensional flow-around problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  2. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  3. N. N. Yanenko, Fractional Step Method for Solving Multidimensional Problems of Mathematical Physics (Nauka, Novosibirsk, 1967) [in Russian].

    Google Scholar 

  4. P. J. Roache, Computational Fluid Dynamics (Hermosa, Socorro,NewMexico, 1972; Mir, Moscow, 1980).

    MATH  Google Scholar 

  5. C. A. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques and Vol. 2: Specific Techniques for Different Flow Categories (Springer, Berlin, 1991; Mir, Moscow, 1991).

    Book  MATH  Google Scholar 

  6. S. Yamomoto and H. Daiguji, “Higher-Order AccurateUpwind Schemes for Solving the Compressible Euler and Navier–Stokes Equations,” Computer and Fluids 22, 259–270 (1993).

    Article  Google Scholar 

  7. R. J. Le Veque, Finite Volume Methods for Hyperbolic Problems (Univ. Press, Cambridge, 2002).

    Google Scholar 

  8. J. B. Vos, A. Rizzi, D. Darrac, and E. H. Hirschel, “Navier–Stokes Solvers in European Aircraft Design,” Progress in Aerospace Sci. 38, 601–697 (2002).

    Article  Google Scholar 

  9. O. Hassan, K. Morgan, E. J. Probert, and J. Peraire, “Unstructured TetrahedralMeshGeneration for Three-Dimensional Viscous Flows,” J. Numer.Methods Engrg. 39, 549–567 (1996).

    Article  MATH  Google Scholar 

  10. V. M. Kovenya and N. N. Yanenko, Splitting Method in Problems of Gas Dynamics (Nauka, Novosibirsk, 1981) [in Russian].

    MATH  Google Scholar 

  11. V. M. Kovenya, Splitting Algorithms for Solving Multi-Dimensional Problems of Aerohydrodynamics (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2014) [in Russian].

    Google Scholar 

  12. A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Moscow, 1978; Birkhäuser, Basel, 1989).

    Book  Google Scholar 

  13. J. S. Sheng, “A Survey of Numerical Methods for Solving the Navier–Stokes Equations of Compressible Gas Flows,” Aerokosmich. Tekhn. No. 2, 65–92 (1986).

    Google Scholar 

  14. A. Lerat and C. Corre, “High Order Residual-Based Compact Schemes on Structured Grids,” in 34th Computing Fluid Dynamics Course, Vol. 1 (Von Karman Institute for Fluid Dynamics, Paris, 2006), pp.1–111.

    Google Scholar 

  15. C. Corre, G. Hanss, and A. Lerat, “A Residual Based Compact Scheme for the Unsteady Compressible Navier–Stokes Equations,” Computers and Fluids 34, 561–580 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. M. Beam and R. F. Warming, “An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation Law Form,” J. Comput. Phys. 22, 87–108 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. I. Pinchukov and Ch. V. Shu, Numerical Methods of Higher Orders for Aerodynamic Problems (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  18. A. I. Tolstykh, Compact Difference Schemes and Their Applications to the Problems of Aerohydrodynamics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  19. M. Ya. Ivanov, V. G. Krupa, and R. Z. Nigmatullin, “Implicit Scheme due to S. K. Godunov of Higher Accuracy for Integration of the Navier-Stokes Equations,” Zh. Vychisl. Mat. i Mat. Fiz. 29 (6), 888–901 (1989).

    Google Scholar 

  20. M. S. Liou and C. Steffen, “A New Flux Splitting Scheme,” J. Comput. Phys. 107, 23–39 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. S. Lebedev and S. G. Chernyi, PracticalWork on Numerical Solution of Partial Differential Equations (Novosib. Gos. Univ., Novosibirsk, 2000) [in Russian].

    Google Scholar 

  22. P. Woodward and P. Collela, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks,” J. Comput. Phys. 54, 115–173 (1984).

    Article  MathSciNet  Google Scholar 

  23. V. M. Kovenya and P. V. Babintsev, “Splitting Algorithms in theMethod of FiniteVolumes,” Vychisl. Tekhnol. 20 (3), 65–84 (2015).

    MATH  Google Scholar 

  24. J. von Neumann, “Oblique Reflection of Shock Waves,” in Collected Works of J. von Neumann, Vol. 6 (Pergamon Press, Oxford, 1963), pp. 238–299.

    Google Scholar 

  25. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon Press, Oxford, 1972; Nauka, Moscow, 1978).

    MATH  Google Scholar 

  26. V. M. Kovenya, G. A. Tarnavskii, and S. G. Chernyi, Application of the Splitting Method in Aerodynamic Problems (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  27. A. N. Lyubimov and V. V. Rusanov, The Gas Flows around Blunt Bodies, Vol. 1 (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kovenya.

Additional information

Original Russian Text © V.M. Kovenya, P.V. Babintsev, 2018, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2018, Vol. XXI, No. 3, pp. 60–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovenya, V.M., Babintsev, P.V. Application of Splitting Algorithms in the Method of Finite Volumes for Numerical Solution of the Navier–Stokes Equations. J. Appl. Ind. Math. 12, 479–491 (2018). https://doi.org/10.1134/S1990478918030080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478918030080

Keywords

Navigation