Graph clustering with a constraint on cluster sizes

  • V. P. Il’ev
  • S. D. Il’eva
  • A. A. Navrotskaya


A graph clustering problem is under study (also known as the graph approximation problem) with a constraint on cluster sizes. Some new approximation algorithm is presented for this problem, and performance guarantee of the algorithm is obtained. It is shown that the problem belongs to the class APX for every fixed p, where p is the upper bound on the cluster sizes.


clustering approximation graph approximation algorithm performance guarantee 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Ageev, V. P. Il’ev, A. V. Kononov, and A. S. Talevnin, “Computational Complexity of a Graph Approximation Problem,” Diskretn. Anal. Issled. Oper. Ser. 1, 13 (1), 3–11 (2006) [J. Appl. Indust. Math. 1 (1), 1–8 (2007)].MathSciNetMATHGoogle Scholar
  2. 2.
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).MATHGoogle Scholar
  3. 3.
    V. P. Il’ev, S. D. Il’eva, and A. A. Navrotskaya, “Approximation Algorithms for Graph Approximation Problems,” Diskretn. Anal. Issled. Oper. 18 (1), 41–60 (2011) [J. Appl. Indust. Math. 5 (4), 569–581 (2011)].MathSciNetMATHGoogle Scholar
  4. 4.
    V. P. Il’ev and G. Sh. Fridman, “On the Problem of Approximation by Graphs with a Fixed Number of Components,” Dokl. Akad. Nauk SSSR 264 (3), 533–538 (1982) [Sov. Math. Dokl. 25 (3), 666–670 (1982)].MathSciNetMATHGoogle Scholar
  5. 5.
    V. P. Il’ev and A. A. Navrotskaya, “Computational Complexity of the Problem of Approximation by Graphs with Connected Components of bounded Size,” Prikl. Diskretn. Mat., No. 3, 80–84 (2011).Google Scholar
  6. 6.
    V. P. Il’ev and A. A. Navrotskaya, “An Approximate and Exact Solution to a Variant of the Problem of Clustering Interconnected Objects,” in Proceedings of the XI International Asian School-Seminar on Optimization Problems for Complex Systems, Cholpon-Ata, Kyrghyzstan, July 27—August 7, 2015 (Inst. Vychisl. Mat. Mat. Geofiz., Novosibirsk, 2015), pp. 278–283.Google Scholar
  7. 7.
    A. A. Lyapunov, “On the Structure and Evolution of Control Systems in Connection with the Theory of Classification,” Problems of Cybernetics, Vol. 27 (Fizmatgiz, Moscow, 1973), pp. 7–18.Google Scholar
  8. 8.
    G. Sh. Fridman, “AGraph Approximation Problem,” in Upravlyaemye Sistemy (Izd. Inst. Mat., Novosibirsk), 8, 73–75 (1971).Google Scholar
  9. 9.
    G. Sh. Fridman, “Investigation of a Classifying Problem on Graphs,” in Methods of Modelling and Data Processing (Nauka, Novosibirsk, 1976), pp. 147–177.Google Scholar
  10. 10.
    N. Ailon, M. Charikar, and A. Newman, “Aggregating Inconsistent Information: Ranking and Clustering,” J. ACM 55 (5), 1–27 (2008).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    N. Bansal, A. Blum, and S. Chawla, “Correlation Clustering,” Mach. Learn. 56 (1–3), 89–113 (2004).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. Ben-Dor, R. Shamir, and Z. Yakhimi, “Clustering Gene Expression Patterns,” J. Comput. Biol. 6 (3–4), 281–297 (1999).CrossRefGoogle Scholar
  13. 13.
    M. Charikar, V. Guruswami, and A. Wirth, “Clustering with Qualitative Information,” J. Comput. Syst. Sci. 71 (3), 360–383 (2005).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    T. Coleman, J. Saunderson, and A. Wirth, “A local-search 2-approximation for 2-correlation-clustering,” in Lecture Notes in Computer Sciences, Vol. 5193: Algorithms—ESA 2008 (Proceedings of the 16th Annual European Symposium on Algorithms, Karlsruhe, Germany, Sept. 15–17, 2008) (Springer, Heidelberg, 2008), pp. 308–319.Google Scholar
  15. 15.
    I. Giotis and V. Guruswami, “Correlation Clustering with a Fixed Number of Clusters,” Theory Comput. 2, 249–266 (2006).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M. Křivánek and J. Morávek, “NP-Hard Problems in Hierarchical-Tree Clustering,” Acta Inform. 23, 311–323 (1986).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    S. E. Schaeffer, “Graph Clustering,” Comput. Sci. Rev. 1 (1), 27–64 (2007).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. Shamir, R. Sharan, and D. Tsur, “ClusterGraph Modification Problems,” Discrete Appl. Math. 144 (1–2), 173–182, (2004).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    I. Tomescu, “Minimal Reduction of a Graph to a Union of Cliques,” DiscreteMath. 10 (1), 173–179 (1974).MathSciNetMATHGoogle Scholar
  20. 20.
    C. T. Zahn, “Approximating Symmetric Relations by Equivalence Relations,” J. Soc. Ind. Appl. Math. 12 (4), 840–847 (1964).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. P. Il’ev
    • 1
    • 2
  • S. D. Il’eva
    • 2
  • A. A. Navrotskaya
    • 1
    • 2
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Dostoevsky Omsk State UniversityOmskRussia

Personalised recommendations