Advertisement

Journal of Applied and Industrial Mathematics

, Volume 10, Issue 2, pp 232–242 | Cite as

A factorization method for numerical solution of the Navier–Stokes equations for a viscous incompressible liquid

Article
  • 25 Downloads

Abstract

Some implicit difference scheme of approximate factorization is proposed for numerical solution of the Navier–Stokes equations for an incompressible liquid in curvilinear coordinates. Testing of the algorithm is carried out on the solution of the problems concerning the Couette and Poiseuille flows; and the results are presented of numerical simulation of a flow between the rotating cylinders with covers.

Keywords

Navier–Stokes equations incompressible fluid difference scheme splitting method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1978; Pergamon Press, Oxford, 1966).MATHGoogle Scholar
  2. 2.
    O. A. Ladyzhenskaya, TheMathematical Theory of Viscous Incompressible Flow (Nauka, Moscow, 1970; Gordon and Breach, New York, 1969).MATHGoogle Scholar
  3. 3.
    N. N. Yanenko, The Method of Fractional Steps. The Solution of Problems of Mathematical Physics in Several Variables (Nauka, Novosibirsk, 1967; Springer, Berlin, 1971).MATHGoogle Scholar
  4. 4.
    A. Chorin, “Numerical Solution of Navier–Stokes Equations,” Math. Comp. 22 (7), 745–762 (1968).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1982; Mir, Moscow, 1980).MATHGoogle Scholar
  6. 6.
    R. Peyret and Th. D. Taylor, Computational Methods for Fluid Flow (Springer, Berlin, 1983; Gidrometeoizdat, Leningrad, 1986).MATHGoogle Scholar
  7. 7.
    A. A. Amsden and F. N. Harlow, The SMACMethod, Rep. NLA–4370 (Los Alamos Sci. Lab., Los Alamos, 1970).Google Scholar
  8. 8.
    E. L. Tarunin, Nonlinear Problems of Heat Convection. Selected Works (Izd. Perm. Gos. Univ., Perm’, 2002) [in Russian].Google Scholar
  9. 9.
    A. A. Tolstykh, Compact Difference Schemes and Their Applications in Hydrodynamics Problems (Nauka, Moscow, 1996) [in Russian].Google Scholar
  10. 10.
    O. M. Belotserkovskii, V. A. Gushchin, V. V. Shchennikov, “Use of the Splitting Method to Solve Problems of the Dynamics of a Viscous Incompressible Fluid,” Zh. Vychisl. Mat. i Mat. Fiz. 15 (1), 197–207 (1975) [USSR Comput. Math. and Math. Phys. 15 (1), 190–200 (1975)].Google Scholar
  11. 11.
    A. A. Samarskii and P. N. Vabishchevich, Additive Schemes for Problems of Mathematical Physics (Nauka, Moscow, 1999) [in Russian].MATHGoogle Scholar
  12. 12.
    Ch H. Bruneau and C. Jouron, “An Efficient Scheme for Solving Steady Incompressible Navier–Stokes Equations,” J. Comput. Phys. 89 (2), 389–413 (1990).CrossRefMATHGoogle Scholar
  13. 13.
    T. Kavamura, H. Takami, and K. Kuwahara, New Higher-Order Upwind Scheme for Incompressible Navier–Stokes Equations (Springer, New York, 1985).MATHGoogle Scholar
  14. 14.
    P. N. Vabishchevich, “Additive Schemes for Some Differential-Operator Equations,” Zh. Vychisl. Mat. iMat. Fiz. 50 (12), 2144–2154 (2010) [Comput. Math. and Math. Phys. 50 (12), 2033–2043 (2010)].MathSciNetMATHGoogle Scholar
  15. 15.
    S. G. Chernyi, D. V. Chirkov, V. N. Lapin, V. A. Skorospelov, and S. V. Sharov, Computational Modeling of Flows in Turbomachines (Nauka, Novosibirsk, 2006) [in Russian].Google Scholar
  16. 16.
    V. M. Kovenya and N. N. Yanenko, Splitting Method in Problems of Gas Dynamics (Nauka, Novosibirsk, 1981) [in Russian].MATHGoogle Scholar
  17. 17.
    V. M. Kovenya, “An Algorithm for Solution of the Navier–Stokes Equations for Viscous Incompressible Fluid,” Vychisl. Tekhnol. 11 (2), 39–51 (2006).MathSciNetMATHGoogle Scholar
  18. 18.
    A. V. Bazovkin, V. M. Kovenya, and O. M. Vavilova, “Factorization Method for Numerical Solution of the Navier-Stokes Equations for Viscous Incompressible Fluid,” Vychisl. Tekhnol. 14 (2), 13–31 (2009).MATHGoogle Scholar
  19. 19.
    V. M. Kovenya, Splitting Algorithms for Solving the Aerohydrodynamic Problems of High Dimension (Izd. Sibir. Otdel. Ross. Akad. Nauk, Novosibirsk, 2014) [in Russian].Google Scholar
  20. 20.
    V. M. Kovenya and A. S. Lebedev, “Modifications of the Splitting Method for Constructing Economical Difference Schemes,” Zh. Vychisl. Mat. i Mat. Fiz. 34 (6), 886–897 (1994) [Comput. Math. and Math. Phys. 34 (6), 763–773 (1994)].MathSciNetMATHGoogle Scholar
  21. 21.
    G. I. Marchuk, Methods of Numerical Mathematics (Izd. Novosib. Gos. Univ., Novosibirsk, 1972; Springer, New York, 1982; Nauka, Moscow, 1989).MATHGoogle Scholar
  22. 22.
    G. I. Taylor, “Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,” Philos. Trans. Roy. Soc. London. Ser. A 223, 289–343 (1923).CrossRefMATHGoogle Scholar
  23. 23.
    J. Abshagen, K. A. Cliffe, J. Langenberg, G. Pfister, T. Mullin, and S. J. Tavener, “Taylor–Couette Flows with Independently Rotating End Plates,” Theor. Comput. Fluid Dynamics 18 (2–4), 129–136 (2004).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Computational TechnologiesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations