The method of differential constraints and nonlinear inverse problems

Article
  • 31 Downloads

Abstract

Themethod of differential constraints is applied to the study of some inverse problems for nonlinear one-dimensional differential equations of general type that include the classical equations of soliton theory. Under consideration is the problem of finding a potential for an equation of continuum mechanics in the one-dimensional case in the presence of some differential constraint.

Keywords

inverse problem nonlinear equation soliton presentations of solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981; Mir,Moscow, 1987).CrossRefMATHGoogle Scholar
  2. 2.
    Yu. E. Anikonov, N. B. Ayupova, V. G. Bardakov, V. P. Golubyatnikov, and M. V. Neshchadim, “Inversion of Mapping and Inverse Problems,” Siberian Electron. Math. Rep. 9, 382–432 (2012) [URL: http://semr.math.nsc.ru].MathSciNetGoogle Scholar
  3. 3.
    Yu. E. Anikonov and M. V. Neshchadim, “On Analytical Methods in the Theory of Inverse Problems for Hyperbolic Equations. I,” Sibirsk. Zh. Industr. Mat. 14 (1), 27–39 (2011) [J. Appl. Indust. Math. 5 (4), 506–518 (2011)].MathSciNetMATHGoogle Scholar
  4. 4.
    Yu. E. Anikonov and M. V. Neshchadim, “On Analytical Methods in the Theory of Inverse Problems for Hyperbolic Equations. II,” Sibirsk. Zh. Industr. Mat. 14 (2), 28–33 (2011) [J. Appl. Indust. Math. 6 (1), 6–11 (2012)].MathSciNetMATHGoogle Scholar
  5. 5.
    Yu. E. Anikonov and M. V. Neshchadim, “Representations for the Solutions and Coefficients of Second-Order Differential Equations,” Sibirsk.Zh. Industr. Mat. 15 (4), 17–23 (2012) [J. Appl. Indust. Math. 7 (1), 15–21 (2013)].Google Scholar
  6. 6.
    Yu. E. Anikonov and M. V. Neshchadim, “Representations for the Solutions and Coefficients of Evolution Equations,” Sibirsk.Zh. Industr. Mat. 16 (2), 40–49 (2013) [J. Appl. Indust.Math. 7 (3), 326–334 (2013)].Google Scholar
  7. 7.
    D. R. Blend, Nonlinear Dynamic Elasticity (Blaisdell, Waltham, 1969; Mir,Moscow, 1972).Google Scholar
  8. 8.
    E. K. Vdovina, “TheHarry DymEquation Is Reducible to a LinearOrdinaryDifferential Equation,” Obozrenie Prikl. i Promyshl. Mat. 18 (4), 626–627 (2011).MathSciNetGoogle Scholar
  9. 9.
    S. V. Golovin, “Exact Solutions for Evolution Submodels of Gas Dynamics,” Prikl. Mekh. i Teoret. Fiz. 43 (4), 3–14 (2002).MathSciNetMATHGoogle Scholar
  10. 10.
    A. Goriely, Integrability and Nonintegrability of Dynamical Systems (World Scientific, Singapore, 2001; Inst. Comput. Issled., Izhevsk, 2006).Google Scholar
  11. 11.
    E. Infeld and G. Rowlands, Nonlinear Waves, Solitons, and Chaos (Cambridge Univ. Press, Cambridge, 1990; Fizmatlit,Moscow, 2006).MATHGoogle Scholar
  12. 12.
    F. Calogero and A. Degasperis, Spectral Transforms and Solitons (North-Holland, Amsterdam, 1982; Mir, Moscow, 1985).Google Scholar
  13. 13.
    A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, Method of Differential Constraints and Its Application to Gas Dynamics (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  14. 14.
    N. N. Yanenko, “About Invariant Differential Constraints for Hyperbolic Systems of Quasilinear Equations,” Izv. Vyssh. Uchebn. Zaved. Mat. No. 3, 186–194 (1961).Google Scholar
  15. 15.
    N. N. Yanenko, Selected Works.Mathematics. Mechanics (Nauka, Moscow, 1991) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations