The inflow problem for the systems of equations of a viscous heat-conducting gas in the noncylindrical domains expanding in time

  • I. A. Kaliev
  • A. A. Shukhardin
  • G. S. Sabitova
Article
  • 22 Downloads

Abstract

For a complete system of equations of the one-dimensional nonstationary motion of some viscous heat-conducting gas, the global solvability is proved of the inflow problem in the noncylindrical domains expanding in time. The proof of the time-global existence and uniqueness theorem is connected with obtaining a priori estimates with the constants depending only on the data of the problem and the value of the time interval T but independent of the existence interval of the local solution.

Keywords

Navier-Stokes system of equations heat-conducting gas global solvability non-cylindrical domain expanding in time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Kaliev and A. V. Kazhikhov, “Well-Posedness of a Gas-Solid Phase Transition Problem,” J. Math. Fluid Mech. 1(3), 282–308 (1999).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    A. V. Kazhikhov, “On Global Solvability of One-Dmansional Boundary Value Problems for the Equations of a Viscous Heat-Conducting Gas,” Dinamika Sploshn. Sredy No. 24, 45–61 (1976).Google Scholar
  3. 3.
    S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary Value Problems of Inhomogeneous Fluid Mechanics (Nauka, Novosibirsk, 1983) [in Russian].Google Scholar
  4. 4.
    I. A. Kaliev and M. S. Podkuiko, “On a Boundary Value Problem for the Equations of a Viscous Heat-Conducting Gas in Noncylindrical Domains Shrinking in Time,” Differentsial’nyeUravneniya 42(10), 1356–1374 (2006) [Differential Equations 42 (10), 1426–1446 (2006)].MathSciNetGoogle Scholar
  5. 5.
    I. A. Kaliev and M. S. Podkuiko, “Nonhomogeneous Boundary Value Problems for Equations of Viscous Heat-Conducting Gas in Time-Decreasing Non-Rectangular Domains,” J. Math. Fluid Mech. 10(2), 176–202 (2008).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    V. A. Vaigant, “Nonhomogeneous Boundary Value Problems for Equations of Viscous Heat-Conducting Gas,” Dinamika Sploshn. Sredy No. 97, 3–21 (1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. A. Kaliev
    • 1
  • A. A. Shukhardin
    • 1
  • G. S. Sabitova
    • 1
  1. 1.Sterlitamak Branch of Bashkir State UniversitySterlitamak, BashkortostanRussia

Personalised recommendations