Local search with an exponential neighborhood for the servers load balancing problem

  • I. A. Davydov
  • P. A. Kononova
  • Yu. A. Kochetov
Article
  • 27 Downloads

Abstract

We propose a local search method with a new exponential neighborhood for the servers load balancing problem. Under study are some variants of the local search algorithms with randomized versions of this neighborhood. The computational results are provided that confirm high efficiency of the approach.

Keywords

local search assignment problem load balancing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Beresnev, E. N. Goncharov, and A. A. Mel’nikov, “Local Search over Generalized Neighborhood for an Optimization Problem of Pseudo-Boolean Functions,” Diskretn Anal. Issled. Oper. 18(4), 3–16 (2011) [J. Appl. Industr. Math. 6 (1), 22–30 (2012)].MATHGoogle Scholar
  2. 2.
    I. Davydov, Yu. Kochetov, N. Mladenovic, and D. Urosevich, “Fast Metaheuristics for the Discrete (r|p)-Centroid Problem,” Avtomat. i Telemekh. 75(4), 106–119 (2014) [Autom. Remote Control 75 (4), 677–687 (2014)].Google Scholar
  3. 3.
    P. A. Kononova and Yu. A. Kochetov, “The Variable Neighborhood Search for the Two Machine Flow Shop Problem with a Passive Prefetch,” Diskretn Anal. Issled. Oper. 19(5), 63–82 (2012) [J. Appl. Industr. Math. (2013) 7 (1), 54–67].Google Scholar
  4. 4.
    Yu. A. Kochetov and P. A. Kononova, “Problem of Load Balancing Servers,” Vestnik Novosib. Gos. Univ. Ser. Inform. Tekhnol. 11(4), 71–76 (2013).Google Scholar
  5. 5.
    A. Mel’nikov, “Randomized Local Search for the Discrete Competitive Facility Location Problem,” Avtomat. i Telemekh. 75(4), 134–152 (2014) [Autom. Remote Control 75 (4), 700–714 (2014)].Google Scholar
  6. 6.
    R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, “A Survey of Very Large-Scale Neighborhood Search Techniques,” Discrete Appl. Math. 123(1–3), 75–102 (2002).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    I. A. Davydov, Yu. A. Kochetov, and E. Carrizosa, “A Local Search Heuristic for the (r|p)-Centroid Problem in the Plane,” Comput. Oper. Res. 52(B), 334–340 (2014).CrossRefMathSciNetGoogle Scholar
  8. 8.
    G. Gutin, “Exponential Neighborhood Local Search for the Traveling Salesman Problem,” Comput. Oper. Res. 26, 313–320 (1999).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    G. Gutin and A. Yeo, “Small Diameter Neighborhood Graphs for the Traveling Salesman Problem: Four Moves from Tour to Tour,” Comput. Oper. Res. 26, 321–327 (1999).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    P. Hansen and N. Mladenovich, “Variable Neighborhood Search,” Eur. J. Oper. Res. 13, 449–467 (2001).CrossRefGoogle Scholar
  11. 11.
    Yu. Kochetov, E. Alekseeva, T. Levanova, and M. Loresh, “Large Neighborhood Local Search for the p-Median Problem,” Yugoslav. J. Oper. Res. 15(1), 53–63 (2005).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Yu. Kiochetov, P. Kononova, and M. Paschenko, “Formulation Space Search Approach for the Teacher/Class Timetabling Problem,” Yugoslav. J. Oper. Res. 18(1), 1–11 (2008).CrossRefGoogle Scholar
  13. 13.
    R. Marti, “Multi-Start Methods,” in Handbook of Metaheuristics (Kluwer Acad. Publ., Dordrecht, 2003), pp. 355–368.Google Scholar
  14. 14.
    E.-G. Talbi, Metaheuristics: from Design to Implementation (Wiley, Berlin, 2009).CrossRefGoogle Scholar
  15. 15.
    M. Yannakakis, “Computational Complexity,” in Local Search in Combinatorial Optimization (Wiley, Chichester, 1997), pp. 19–55.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. A. Davydov
    • 1
    • 2
  • P. A. Kononova
    • 1
    • 2
  • Yu. A. Kochetov
    • 1
    • 2
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations