Advertisement

Study of discrete automaton models of gene networks of nonregular structure using symbolic calculations

  • A. A. Evdokimov
  • S. E. Kochemazov
  • I. V. Otpushchennikov
  • A. A. Semenov
Article
  • 52 Downloads

Abstract

We introduce the discrete automaton models of gene networks with weight functions of vertices accounting for the various forms of the regulatory interaction of agents. We study the discrete mapping that describes the operation of a fragment of the gene network of the bacteria E. coli. For this mapping, we find its fixed points (stationary states) on using the SAT approach. We also study the mappings that are defined by the random graphs of the network which we generate in accordance with the Gilbert-Erdos-Renyi and Watts-Strogatz models. For these mappings, we find the fixed points and the length 2 and 3 cycles. This article can be regarded as a survey of our results on the discrete models of gene networks and the numerical methods for studying their operation.

Keywords

discrete function discrete automaton model of gene networks SAT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. D. Grigorenko, A. A. Evdokimov, V. A. Likhoshvai, and I. A. Lobareva, “Fixed Points and Cycles of Automata Mappings ThatModel the Gene Network Functioning,” Vestnik Tomsk.Gos.Univ., Appl. No. 14, 206–212 (2005).Google Scholar
  2. 2.
    G. V. Demidenko, S. I. Fadeev, V. A. Likhoshvai, Yu. G. Matushkin, and N. A. Kolchanov, “Mathematical Simulation of Regulatory Circuits of Gene Networks,” Zh. Vychisl. Mat. Mat. Fiz. 44(12), 2276–2295 (2004) [Comput. Math. Math. Phys. 44 (12), 2166–2183 (2004)].MATHMathSciNetGoogle Scholar
  3. 3.
    A. A. Evdokimov, “Discrete Models of Gene Networks: Analysis and Complexity of Functioning,” Vychisl. Tekhnol. 13(3), 31–37 (2008).Google Scholar
  4. 4.
    A. A. Evdokimov, S. E. Kochemazov, I. V. Otpushchennikov, and A. A. Semenov, “Symbolic Algorithms for Solving Boolean Equations in Application to Studying the Discrete Models of Gene Networks,” in Proceedings of the XVI International Conference on Problems of Theoretical Cybernetics (Nizhni Novgorod, 2011) (Nizhegorod. Gos. Univ., Nizhni Novgorod, 2011), pp. 151–154.Google Scholar
  5. 5.
    A. A. Evdokimov, S. E. Kochemazov, and A. A. Semenov, “Application of Symbolic Computations for Studying Discrete Models of Some Classes of Gene Networks,” Vychisl. Tekhnol. 16(1), 30–47 (2011).MATHGoogle Scholar
  6. 6.
    A. A. Evdokimov, V. A. Likhoshvai, and A. V. Komarov, “On a Structure Reconstruction of DiscreteModels of the Gene Network Functioning,” Vestnik Tomsk. Gos. Univ., Appl. No. 14, 213–217 (2005).Google Scholar
  7. 7.
    A. A. Evdokimov and A. L. Perezhogin, “Discrete Dynamical Systems of a Circulant Type with Linear Functions at the Vertices of a Network,” Diskretn. Anal. Issled. Oper. 18(3), 39–48 (2011) [J. Appl. Indust. Math. 6 (2), 160–166 (2012)].MATHGoogle Scholar
  8. 8.
    N. A. Kolchanov, A. F. Latypov, V. A. Likhoshvai, Yu. G. Matushkin, Yu. V. Nikulichev, and A. V. Ratushnyi, “Optimal Control Problems in Gene Network Dynamics and the Methods for Solving Them,” Izv. Ross. Akad. Nauk. Teor. Systemy Upravleniya No. 5, 36–45 (2004) [J. Comput. Syst. Sci. Int. 43 (6), 862–872 (2004)].Google Scholar
  9. 9.
    E. O. Kutumova, “Functioning Cycles of a Discrete Model of a Regulatory Circuit of a Gene Network with Threshold Functions,” Diskretn. Anal. Issled. Oper. 18(3), 65–75 (2011).MATHGoogle Scholar
  10. 10.
    I. V. Otpushchennikov and A. A. Semenov, “A Technology for Translation of Combinatorial Problems into Boolean Equations,” Prikl. Diskretn. Mat. No. 1, 96–115 (2011).Google Scholar
  11. 11.
    M. A. Posypkin, O. S. Zaikin, D. V. Bespalov, and A. A. Semenov, “Solving the Cryptanalysis Problems of Stream Ciphers in Distributed Computing Environments,” Trudy Inst. System. Anal. No. 46, 119–137 (2009).Google Scholar
  12. 12.
    Computer System Biology (Izd. Sibirsk. Otdel. Ross. Akad. Nauk, Novosibirsk, 2008) [in Russian].Google Scholar
  13. 13.
    G. S. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 8, 234–259 (1968).MATHGoogle Scholar
  14. 14.
    A. Biere, V. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfiability (IOS Press, Amsterdam, 2009).MATHGoogle Scholar
  15. 15.
    S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in The 3rd Annual ACM Symposium on Theory of Computing (Shaker Heights, Ohio, USA, 1971) (ACM, New York, 1971), pp. 151–159.Google Scholar
  16. 16.
    S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “Critical Phenomena in Complex Networks,” Rev. Modern Physics 80, 1275–1335 (2008).CrossRefGoogle Scholar
  17. 17.
    E. Dubrova and M. Teslenko, “A SAT-Based Algorithm for Finding Attractors in Synchronous Boolean Networks,” IEEE/ACMTrans. Comput. Biology Bioinform. 8(5), 1393–1399 (2011).CrossRefGoogle Scholar
  18. 18.
    E. Dubrova, M. Teslenko, and A. Martinelli, “Kauffman Networks: Analysis and Applications,” in Proceedings of ICCAD (San Jose, USA, 2005) (IEEE Comput. Soc., Washington, DC, 2005), pp. 479–484.Google Scholar
  19. 19.
    O. Erdos and A. Renyi, “On Random Graphs,” Publ. Math. 6, 290–297 (1959).MathSciNetGoogle Scholar
  20. 20.
    E. N. Gilbert, “Random graphs,” Ann. Math. Stat. 30(4), 1141–1144 (1959).CrossRefMATHGoogle Scholar
  21. 21.
    S. A. Kauffman, “Metabolic Stability and Epigenesis in Randomly ConstructedGeneticNets,” J. Theor. Biol. 22(3), 437–467 (1969).CrossRefGoogle Scholar
  22. 22.
    I. Mironov and L. Zhang, “Applications of SAT Solvers to Cryptanalysis of Hash Functions,” in Lecture Notes in Computer Sciences, Vol. 4121 (Springer, Berlin, 2006), pp. 102–115.Google Scholar
  23. 23.
    M. E. J. Newman, “The Structure and Function of Complex Networks,” SIAM Review 45(2), 167–256 (2003).CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    A. Semenov, O. Zaikin, D. Bespalov, and M. Posypkin, “Parallel Logical Cryptanalysis of the Generator A5/1 in BNB-Grid System,” in Lecture Notes in Computer Sciences, Vol. 6873 (Springer, Berlin, 2011), pp. 473–483.Google Scholar
  25. 25.
    R. Solomonoff and A. Rapoport, “Connectivity of Random Nets,” Bull. Math. Biophys. 13, 440–442 (1951).CrossRefMathSciNetGoogle Scholar
  26. 26.
    M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT Solvers to Cryptographic Problems,” in Lecture Notes in Computer Sciences, Vol. 5584 (Springer, Berlin, 2009), pp. 244–257.Google Scholar
  27. 27.
    D. J. Watts and S. H. Strogatz, “Collective Dynamics of Small-World Networks,” Nature 393, 440–442 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. A. Evdokimov
    • 1
  • S. E. Kochemazov
    • 2
  • I. V. Otpushchennikov
    • 2
  • A. A. Semenov
    • 2
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Institute for System Dynamics and Control TheoryIrkutskRussia

Personalised recommendations