Advertisement

Journal of Applied and Industrial Mathematics

, Volume 7, Issue 4, pp 515–521 | Cite as

A 2-approximation polynomial algorithm for a clustering problem

  • A. V. Kel’manov
  • V. I. Khandeev
Article

Abstract

A 2-approximation algorithm is presented for some NP-hard data analysis problem that consists in partitioning a set of Euclidean vectors into two subsets (clusters) under the criterion of minimum sum-of-squares of distances from the elements of clusters to their centers. The center of the first cluster is the average value of vectors in the cluster, and the center of the second one is the origin.

Keywords

cluster analysis search for a vector subset computational complexity approximation polynomial algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Kh. Gimadi, A. V. Kel’manov, M. A. Kel’manova, and S. A. Khamidullin, “A Posteriory Detection a Quasiperiodic Fragment in a Number Sequence under a Given Number of Repetitions,” Sibirsk. Zh. Industr. Mat. 9(1), 55–74 (2006).MathSciNetMATHGoogle Scholar
  2. 2.
    E. Kh. Gimadi, A. V. Pyatkin, and I. A. Rykov, “On Polynomial Solvability of Some Problems of a Vector Subset Choice in a Eucledian Space of Fixed Dimension,” Diskretn. Anal. Issled. Oper. 15(6), 11–19 (2008) [J. Appl. Indust. Math. 4 (1), 48–53 (2010)].MATHGoogle Scholar
  3. 3.
    A. V. Dolgushev and A. V. Kel’manov, “An Approximation Algorithm for Solving a Problem of Claster Analysis,” Diskretn. Anal. Issled. Oper. 18(2), 29–40 (2011) [J. Appl. Indust. Math. 5 (4), 551–558 (2011)].MATHGoogle Scholar
  4. 4.
    A. V. Kel’manov, “AProblemofOff-Line Detection of a Repeating Fragment in a Number Sequence,” Trudy Inst.Mat. i Mekh. Ural. Otdel. Ross. Akad. Nauk 14(2), 81–88 (2008).Google Scholar
  5. 5.
    A. V. Kel’manov and A. V. Pyatkin, “On Complexity of Some Problems of Searching for Vector Subsets and Claster Analysis,” Zh. Vychisl.Mat. Mat. Fiz. 49(11), 2059–2067 (2009).MathSciNetMATHGoogle Scholar
  6. 6.
    A. V. Kel’manov and A. V. Pyatkin, “On Complexity of One of Variants of a Problem of Choosing a Subset of ‘Akin’ Vectors,” Dokl. Ross. Akad. Nauk 421(5), 590–592 (2008).MathSciNetGoogle Scholar
  7. 7.
    A. V. Kel’manov and A. V. Pyatkin, “On a Version of a Problem of Choosing a Vector Subset,” Diskretn. Anal. Issled. Oper. 15(5), 20–34 (2008) [J. Appl. Indust. Math. 3 (4), 447–455 (2009)].MathSciNetMATHGoogle Scholar
  8. 8.
    D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-Hardness of Euclidean Sum-of-Squares Clustering,” Preprint G-2008-33 (Les Cahiers du GERAD, 2008).Google Scholar
  9. 9.
    D. Aloise and P. Hansen, “On the Complexity ofMinimum Sum-of-Squares Clustering,” Preprint G-2007-50 (Les Cahiers du GERAD, 2007).Google Scholar
  10. 10.
    K. Anil and K. Jain. “Data Clustering: 50 Years Beyond k-Means,” Pattern Recognit. Lett. 31, 651–666 (2010).CrossRefGoogle Scholar
  11. 11.
    A.W. F. Edwards and L. L. Cavalli-Sforza, “AMethod for Cluster Analysis,” Biometrics 21, 362–375 (1965).CrossRefGoogle Scholar
  12. 12.
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).MATHGoogle Scholar
  13. 13.
    A. V. Kel’manov and B. Jeon, “A Posteriori Joint Detection and Discrimination of Pulses in a Quasiperiodic Pulse Train,” IEEE Trans. Signal Process. 52(3), 645–656 (2004).MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. B. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1 (Berkeley, 1967), pp. 281–297.Google Scholar
  15. 15.
    M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The Planar k-Means Problem is NP-Hard,” in Lecture Notes in Computer Science, Vol. 5431 (Springer, New York, 2009), pp. 284–285.Google Scholar
  16. 16.
    M. Rao, “Cluster Analysis and Mathematical Programming,” J. Amer. Stat. Assoc. 66, 622–626 (1971).CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations