Numerical experiments with the inhomogeneity indicator in positron emission tomography



By means of numerical methods, the question is studied of applicability of the inhomogeneity indicator in positron emission tomography. The signal registered by the tomograph is described in terms of an imitation model using the Monte Carlo method. The possibility is demonstrated of the effective use of the inhomogeneity indicator for solving the problem under consideration. Some numerical results are presented in graphical form for reconstructing the boundaries of unknown activity sources.


positron emission tomography inhomogeneity indicator Compton scattering Monte Carlo method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Visvikis, C. Cheze-Le Rest, and P. Jarritt, “PET Technology: Current Trends and Future Developments,” British J. Radiology 77(923), 906–910 (2004).CrossRefGoogle Scholar
  2. 2.
    B. Bendriem, The Theory and Practice of 3D PET (Kluwer Acad. Publ., Boston, 1998).Google Scholar
  3. 3.
    S. Grootoonk, T. J. Spinks, D. Sashin, N. M. Spyrou, and T. Jones, “Correction for Scatter in 3D PET Using Dual Energy Window Method,” Phys. Med. Biol. (1996) 41(12), 2757–2774.CrossRefGoogle Scholar
  4. 4.
    B. Bendriem, R. Trebossen, V. Frouin, A. Syrota “A PET Scatter Correction Using Simultaneous Acquisitions with Low and High Lower Energy Thresholds,” in Proceedings of IEEE Medical Imaging Conference (San Francisco, 1993), Vol. 3 (IEEE, New York, 1993), pp. 1779–1783.Google Scholar
  5. 5.
    L. Shao and J. S. Karp, “Cross-Plane Scatter Correction-Point Source Deconvolution in PET,” IEEE Trans. Med. Imaging. 10(3), 234–239 (1991).CrossRefGoogle Scholar
  6. 6.
    M. J. Lercher and K. Wienhard, “Scatter Correction in 3-D PET,” IEEE Trans. Med. Imaging. 13(4), 649–657 (1994).CrossRefGoogle Scholar
  7. 7.
    J. M. Ollinger, “Model-Based Scatter Correction for Fully 3D PET,” Phys. Med. Biol. 41(1), 153–176 (1996).CrossRefGoogle Scholar
  8. 8.
    C. C. Watson, D. A. Newport, and M. E. Casey, “A Single Scatter Simulation Technique for Scatter Correction in 3D PET,” in Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Kluwer Acad. Publ., Netherlands, 1996), pp. 255–268.Google Scholar
  9. 9.
    C. C. Watson, “New, Faster, Image-Based Scatter Correction for 3D PET,” IEEE Trans. Nucl. Sci. 47(4), 1587–1594 (2000).CrossRefGoogle Scholar
  10. 10.
    H. Zaidi, “Scatter Modelling and Correction Strategies in Fully 3-D PET,” Nucl. Med. Comm. 22(11), 1181–1184 (2001).CrossRefGoogle Scholar
  11. 11.
    H. Zaidi and M.-L. Montandon, “Scatter Compensation Techniques in PET,” PET Clinics. 2(2), 219–234 (2007).CrossRefGoogle Scholar
  12. 12.
    G. Chinn, A. M. K. Foudray, and C. S. Levin, “A Method to Include Single Photon Events in Image Reconstruction for a 1 mm Resolution PET System Built with Advanced 3-D Positioning Detectors,” in Proceedings of IEEE Nuclear Science Symposium (San Diego, 2006) (IEEE, New York, 2007), pp. 1740–1745.Google Scholar
  13. 13.
    I. G. Kazantsev, S. Matej, and R. M. Lewitt, “Geometric Model of Single Scatter in PET,” in Proceedings of IEEE Nuclear Science Symposium (San Diego, 2006) (IEEE, New York, 2007), pp. 2740–2743.Google Scholar
  14. 14.
    T. Kosters, F. Natterer, and F. Wubbeling, “Scatter Correction in PET Using the Transport Equation,” in Proceedings of IEEE Nuclear Science Symposium (San Diego, 2006) (IEEE, New York, 2007), pp. 3305–3309.Google Scholar
  15. 15.
    D. S. Anikonov, “Construction of an Inhomogeneity Indicator in the Radiation Investigation of a Medium,” Dokl. Akad. Nauk 357(3), 324–327 (1997).MathSciNetGoogle Scholar
  16. 16.
    D. S. Anikonov, “Integro-Differential Heterogeneity Indicator in Tomography Problem,” J. Inverse Ill-Posed Probl. 7(1), 17–59 (1999).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    D. S. Anikonov, A. E. Kovtanyuk, and I. V. Prokhorov, Transport Equation in Tomography (VSP, Utrecht, 2002).Google Scholar
  18. 18.
    D. S. Anikonov and V. G. Nazarov, “An Integro-Differential Indicator of Nonhomogeneity for Incomplete Data,” Dokl. Akad. Nauk, Ross. Akad. Nauk 376(1), 24–26 (2001) [Dokl. Math. 63 (1), 112–114 (2001)].MathSciNetMATHGoogle Scholar
  19. 19.
    D. S. Konovalova and I. V. Prokhorov, “Numerical Realization of the Step-by-Step Reconstruction for the X-Ray Tomography Problem,”Sibirsk. Zh. Industr. Mat. 11(4), 61–65 (2008).MathSciNetMATHGoogle Scholar
  20. 20.
    I.M. Sobol, Numerical Monte Carlo Methods (Nauka, Moscow, 1973) [in Russian].MATHGoogle Scholar
  21. 21.
    P. Colombino, B. Fiscella, and L. Trossi, “Study of Positrunium in Water and Ice from 22 to −144 C by Annihilation Quanta Measurements,” Il Nuovo Cimento 38(2), 707–723 (1965).CrossRefGoogle Scholar
  22. 22.
    U. Fano, L. Spencer, and M. Berger, Transport of Gamma Radiation (Moscow, Gosatomizdat, 1963) [in Russian].Google Scholar
  23. 23.
    J. H. Hubbell,W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic Form Factors, Incoherent Scattering Functions, and Photon Scattering Cross Sections,” J. Phys.Chem. Ref. Data 4(3), 471–538 (1975).CrossRefGoogle Scholar
  24. 24.
    I. Manno, “Event Reconstruction Strategies,” URL:
  25. 25.
    S. Yamamoto, H. Horii, M. Hurutani, K. Matsumoto, and M. Senda, “Investigation of single, random, and true counts from natural radioactivity in LSO-based clinical PET,” Ann. Nucl. Med. (2005) 19(2), 109–114.CrossRefGoogle Scholar
  26. 26.
    J. H. Hubbell and S. M. Seltzer, “Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 Kev to 20 Mev for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest,” Preprint no. ISTIR-5632 (Nat. Inst. of Standard and Technology, Gaithersburg, 1995).Google Scholar
  27. 27.
    P. L’Ecuyer and S. Cote, “Implementing a Random Number Package with Splitting Facilities,” ACM Trans. Math. Software 17(1), 98–111 (1991).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Applied MathematicsVladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations