Local search with a generalized neighborhood in the optimization problem for pseudo-Boolean functions

  • V. L. Beresnev
  • E. N. Goncharov
  • A. A. Mel’nikov


In the optimization problem for pseudo-Boolean functions we consider a local search algorithm with a generalized neighborhood. This neighborhood is constructed for a locally optimal solution and includes nearby locally optimal solutions. We present some results of simulations for pseudo-Boolean functions whose optimization is equivalent to the problems of facility location, set covering, and competitive facility location. The goal of these experiments is to obtain a comparative estimate for the locally optimal solutions found by the standard local search algorithm and the local search algorithm using a generalized neighborhood.


optimization locally optimal solution pseudo-Boolean function facility location problem covering problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Beresnev, Discrete Location Problems and Polynomials in Boolean Variables (Inst. Mat., Novosibirsk, 2005) [in Russian].Google Scholar
  2. 2.
    V. L. Beresnev, “Upper Bounds forObjective Functions of Discrete Competitive Facility Location Problems,” Diskret. Anal. Issled. Oper. 15(4), 3–24 (2008) [J. Appl. Indust. Math. 3 (4), 419–432 (2009)].MathSciNetMATHGoogle Scholar
  3. 3.
    V. L. Beresnevand A. A. Mel’nikov, “ApproximateAlgorithms for the Competitive Facility Location Problem,” Diskret. Anal. Issled. Oper. 17(6), 3–19 (2010) [J. Appl. Indust. Math. 5 (2), 180–190 (2011)].Google Scholar
  4. 4.
  5. 5.
    J. E. Beasly, “An Algorithm for Set Covering Problem,” European J. Oper. Res. 31, 85–93 (1987).MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. E. Beasly, “OR-Library: Distributing Test Problems by Electronic Mail,” European J. Oper. Res. 41, 1069–1072 (1990).Google Scholar
  7. 7.
    S. Dempe, Foundations of Bilevel Programming (Kluwer Acad. Publ., Dordrecht, 2002).MATHGoogle Scholar
  8. 8.
    Discrete Location Theory, Ed. by P. B. Mirchandani and R. L. Francis (Wiley, New York, 1990).MATHGoogle Scholar
  9. 9.
    G. Dobson and U. Karmarkar, “Competitive Location on Network,” Oper. Res. 35, 565–574 (1987).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    P. L. Hammer and S. Rudeanu, Boolean Method in Operations Research and Related Areas (Springer, Berlin, 1968).Google Scholar
  11. 11.
    Local Search in Combinatorial Optimization (Wiley, Chichester, 1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. L. Beresnev
    • 1
  • E. N. Goncharov
    • 1
  • A. A. Mel’nikov
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations