Journal of Applied and Industrial Mathematics

, Volume 5, Issue 4, pp 467–477 | Cite as

Approximate solution to the resource consumption minimization problem. I. Construction of a quasioptimal control

Article
  • 31 Downloads

Abstract

For linear systems with constrained control and fixed transition time, we propose two methods for solving the resource consumption minimization problem approximately. We prove that the switching moments of resource-quasioptimal controls are independent of the initial conditions and constant for autonomous systems. Some region of the initial conditions is found for which the constraints on the control are never violated.

Keywords

optimal control quasioptimal control resource consumption linear system switching moments adjoint system admissible region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Nauka, Moscow, 1976) [in Russian].Google Scholar
  2. 2.
    M. Atans and P. Falb, Optimal Control (Mashinostroenie, Moscow, 1968) [in Russian].Google Scholar
  3. 3.
    M. Z. Ragab, “Time Fuel Optimal Decoupling Control Problem,” Adv. in Model. Simul. 22(2), 1–16 (1990).MATHMathSciNetGoogle Scholar
  4. 4.
    J. Redmond and L. Silverberg, “Fuel Consumption in Optimal Control,” J. Guidance Control Dynam. 15(2), 424–430 (1992).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    T. Singh, “Fuel/Time Optimal Control of the Benchmark Problem,” J. Guidance Control Dynam. 18(6), 1225–1231 (1995).CrossRefMATHGoogle Scholar
  6. 6.
    G. Sachs and M. Dinkelmann, “Reduction of Coolant Fuel Losses in Hypersonic Flight by Optimal Trajectory Control,” J. Guidance Control Dynam. 19(6), 1278–1284 (1996).CrossRefMATHGoogle Scholar
  7. 7.
    V. A. Ivanov and S. A. Kozhevnikov, “A Problem of a Fuel-Optimal Control Synthesis for Linear Objects of the Second Order with Control Derivatives,” Izv. Ross. Akad. Nauk Ser. Theory and System Control, No. 4, 77–83 (1996).Google Scholar
  8. 8.
    L. D. Dewell and J. L. Speyer, “Fuel-Optimal Periodic Control and Regulation in Constrained Hypersonic Flight,” J. Guidance Control Dynam. 20(5), 923–932 (1997).CrossRefMATHGoogle Scholar
  9. 9.
    S.W. Liu and T. Singh, “Fuel/Time Optimal Control of Spacecraft Maneuvers,” J. Guidance ControlDynam. 20(2), 394–397 (1997).CrossRefMATHGoogle Scholar
  10. 10.
    V. M. Aleksandrov, “An Approximate Solution to a Problem for Minimum Consumption of Resources,” Zh. Vychisl. Mat. i Mat. Fiz. 39(3), 418–430 (1999).Google Scholar
  11. 11.
    G. V. Shevchenko, “A Method for Finding a Control Optimal for Minimum Consumption of Resources for Objects of a Special Kind,” Avtometriya 42(2), 49–67 (2006).MathSciNetGoogle Scholar
  12. 12.
    I. A. Krylov and F. L. Chernous’ko, “On Method of Successive Approximations for Solving the Optimal Control Problems,” Zh. Vychisl. Mat. i Mat. Fiz. 2(6), 1132–1139 (1962).Google Scholar
  13. 13.
    V. B. Gindes, “A Method of Successive Approximations for Solving the Linear Problems of Optimal Control,” Zh. Vychisl. Mat. i Mat. Fiz. 10(1), 216–223 (1970).MathSciNetGoogle Scholar
  14. 14.
    R. P. Fedorenko, Approximate Solution to Optimal Control Problems (Nauka, Moscow, 1978) [in Russian].Google Scholar
  15. 15.
    F. L. Chernous’ko and V. B. Kolmanovskii, “Computational and Approximate Methods of Optimal Control,” Mat. Analiz 14, 101–166 (1977).Google Scholar
  16. 16.
    A. A. Lyubushin, “On Application of Some Modifications of Method of Successive Approximations for Solving the Optimal Control Problems,” Zh. Vychisl. Mat. i Mat. Fiz. 22(1), 30–35 (1982).MATHMathSciNetGoogle Scholar
  17. 17.
    N. I. Grachev and Yu. G. Evtushenko, “A Library of Programs for Solving the Optimal Control Problems,” Zh. Vychisl. Mat. i Mat. Fiz. 19(2), 367–387 (1979).MATHMathSciNetGoogle Scholar
  18. 18.
    V. G. Boltyanskii,Mathematical Methods of Optimal Control (Nauka, Moscow, 1969) [in Russian].Google Scholar
  19. 19.
    V. M. Aleksandrov, “Control of the Dynamical Systems Optimal and Quasioptimal in Consumption of Resources,” Siberian Electron. Math. Reports 7, 166–249 (2010);URL: http://semr.math.nsc.ru/v7/p166-249.pdf.Google Scholar
  20. 20.
    V.M. Aleksandrov, “Approximate Solution to Optimal Control Problems,” Problemy Kibernet., no. 41, 143–206 (1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Institute of System Dynamics and Control TheoryIrkutskRussia

Personalised recommendations