On multidimensional models of gene network functioning

Article
  • 21 Downloads

Abstract

Some sufficient conditions are obtained for the existence of closed trajectories of the odd-dimensional nonlinear dynamical systems that model gene networks with negative feedbacks.

Keywords

gene network negative feedback nonlinear dynamical system stationary point periodic trajectory 

References

  1. 1.
    Yu. A. Gaidov and V. P. Golubyatnikov, “On Some Nonlinear Dynamic Systems Modeling Asymmetric Gene Networks,” Vestnik Novosibirsk. Gos. Univ. Ser. Mat. 7(2), 8–17 (2007).Google Scholar
  2. 2.
    V. P. Golubyatnikov, A.G. Kleshchev, K. A. Kleshcheva, and A. V. Kudryavtsev, “Studying the Phase Portraits of Tree-Variable Models of Gene Networks,” Sibirsk. Zh. Indust. Mat. 9(1), 75–84 (2006).MATHGoogle Scholar
  3. 3.
    V. P. Golubyatnikov, Yu. A. Gaidov, A. G. Kleshchev, and E. P. Volokitin, “Modeling of Asymmetric Gene Networks Functioning with Different Types of Regulation,” Biophysics 51(Suppl. 1), 61–65 (2006).CrossRefGoogle Scholar
  4. 4.
    V. A. Likhoshvai, V. P. Golubyatnikov, G. V. Demidenko, A. A. Evdokimov, and S. I. Fadeev, “The Theory of Gene Networks,” Systematic Bioinformatics. Integration Projects. 14, 395–480 (2008).Google Scholar
  5. 5.
    V. P. Golubyatnikov, V. A. Likhoshvai, E. P. Volokitin, Yu. A. Gaidov, and A. F. Osipov, “Periodic Trajectories and Andronov-Hopf Bifurcations in Models of Gene Networks,” in Bioinformatics of Genome Regulation and Structure, II (Springer, New York, 2006), pp. 405–414.CrossRefGoogle Scholar
  6. 6.
    E. P. Volokitin and S. A. Treskov, “Andronov-Hopf Bifurcation in a Model of a Hypothetical Gene Network,” Sibirsk. Zh. Indust. Mat. 8(1), 30–40 (2005).MathSciNetGoogle Scholar
  7. 7.
    Yu. A. Gaidov, “On the Stability of Periodic Trajectories in Some Gene Network Models,” Sibirsk. Zh. Indust. Mat. 11(1), 57–62 (2008) [J. Appl. Indust.Math. 4 (1), 43–47 (2010)].MathSciNetMATHGoogle Scholar
  8. 8.
    V. A. Likhoshvai, Yu. G. Matushkin, and S. I. Fadeev, “Problems of the Theory of Functioning of Gene Networks,” Sibirsk. Zh. Indust. Mat. 6(2), 64–80 (2003).MathSciNetGoogle Scholar
  9. 9.
    S. Hastings, J. Tyson, and D. Webster, “Existence of Periodic Solutions for Negative Feedback Cellular Control Systems,” J. Differential Equations 25, 39–64 (1977).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    M. B. Elowitz and S. Leibler, “A Synthetic Oscillatory Network of Transcription Regulators,” Nature 403, 335–338 (2000).CrossRefGoogle Scholar
  11. 11.
    T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a Genetic Toggle Switch in Escherichia coli,” Nature 403, 339–342 (2000).CrossRefGoogle Scholar
  12. 12.
    V. P. Golubyatnikov, V. A. Likhoshvai, Yu. A. Gaidov, A. G. Kleshchev, and E. A. Lashina, “Regular and Chaotic Dynamics in Gene Networks Modeling,” in Proceedings of the 8 International Conference “Human & Computers-2005” (Univ. Aizu, Aizu-Wakamatsu, Japan, 2005), pp. 7–12.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations