On pointwise complete pairs of linear transformations

Article
  • 34 Downloads

Abstract

We prove the pointwise completeness of the order n system with constant coefficients under the assumption that the matrices of the system split into square blocks of the same size so that the collection of all blocks embeds into a finite dimensional associative division algebra; the block rank of the passive matrix is at most 2.

Keywords

pointwise completeness system of ordinary differential equations with delay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Weiss, “On the Controllability of Delay Differential System,” SIAM J. Control. 5(4), 575–587 (1967).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. V. Metel’skii, “Problems of Pointwise Completeness in the Control Theory of Differential-Difference Systems,” UspekhiMat. Nauk 49(2), 103–140 (1994).MathSciNetGoogle Scholar
  3. 3.
    R. M. Brooks and K. Schmitt, “Pointwise Completeness of Differential-Difference Equations,” Rocky Mountain J. Math. 3(3), 11–14 (1973).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    A. M. Zverkin, “Pointwise Completeness of Systems with Delay,” Differentsial’nye Uravneniya 9(3), 430–436 (1973) [Differential Equations 9, 329–334 (1975)].MathSciNetMATHGoogle Scholar
  5. 5.
    V. M. Popov, “PointwiseDegeneracy of Linear, Time-Invariant, Delay-Differential Equations,” J. Differential Equations 11(3), 541–561 (1972).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    A. A. Korobov, “Effective Conditions of Pointwise Completeness for Linear Delay Systems,” Sibirsk. Zh. Industr. Mat. 10(1), 96–114 (2007) [J. Appl. Indust. Math. 3 (1), 78–95 (2009)].MathSciNetMATHGoogle Scholar
  7. 7.
    R. B. Zmood and N. H. McClamroch, “On the Pointwise Completeness of Differential-Difference Equations,” J. Differential Equations 12(3), 474–486 (1972).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S. A. Minyuk and L. V. Lomakina, “Pointwise Degenerate Systems with Deviating Argument,” Differentsial’nye Uravneniya 33(11), 1507–1515 (1997) [Differential Equations 33 (11), 1513–1521 (1997)].MathSciNetGoogle Scholar
  9. 9.
    A. A. Korobov, “New Efficient Conditions of Pointwise Completeness for Linear Delay Systems,” in Differential Equations, Function Theory, and Applications: Proceedings of the International Conference Dedicated to the 100th Anniversary of I. N. Vekua (Novosibirsk. Gos. Univ., Novosibirsk, 2007), p. 205.Google Scholar
  10. 10.
    A. A. Korobov, “New Efficient Conditions of Pointwise Completeness for Linear Delay Systems,” in Computational Mathematics, Differential Equations, and Information Technologies: Proceedings of the International Conference Dedicated to Ts. B. Shoinzhurov (East Siberian State Technological Univ., Ulan-Ude, 2009), pp. 216–223.Google Scholar
  11. 11.
    A. A. Korobov, “On Algebraic Approach to Solving a New Problem of Optimal Control,” Vychisl. Tekhnol. 8, 283–289 (2003).Google Scholar
  12. 12.
    V. V. Karpuk, “On the Problem of Pointwise Degeneracy,” in Problems of Optimal Control (Nauka i Tekhnika, Minsk, 1981), pp. 208–224.Google Scholar
  13. 13.
    K. K. Elgondyev, “Differential Equations with Delay and Impulse Exposure,” Dokl. Akad. Nauk Resp. Uzbekistan, No. 1, 11–14 (2005).Google Scholar
  14. 14.
    F. Kappel, “Degenerate Difference-DifferentialEquations. Algebraic Theory,” J. Differential Equations 24(1), 99–126 (1977).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations