On solutions to the systems of functional Boolean equations

  • S. S. Marchenkov
  • V. S. Fedorova


Solutions to the systems of functional Boolean equations are under study. For each of the classes P 2, T 0, T 1, S, T 01, and S 01, the problem is solved of constructing some systems of functional Boolean equations with a given set of functional constants and one functional variable whose unique solution is a given function of the class under consideration. For an arbitrary nonempty set F of n-argument Boolean functions, a system of equations with the functional constants and & is built with F as the solution set. If F is closed under transition to dual functions then the corresponding system can be constructed without functional constants.

Key words

functional Boolean equation closed class of Boolean functions 


  1. 1.
    Some Selected Problems in the Theory of Boolean Functions, Ed. by A. S. Balyuk, S. F. Vinokurov, A. I. Gaydukov, et al. (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  2. 2.
    O. Ekin, S. Foldes, P. L. Hammer, and L. Hellerstein, “Equational Characterizations of Boolean Function Classes,” Discrete Math. 211, 27–51 (2000).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Foldes, “Equational Classes of Boolean Functions via the HSP Theorem,” Algebra Univ. 44, 309–324 (2000).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. P. Gavrilov, “Inductive Representations of Boolean Functions and Finite Generation of Post Classes,” Algebra i Logika 23, 88–99 (1984).MathSciNetGoogle Scholar
  5. 5.
    L. Hellerstein, On Generalized Constraints and Certificates, Rutcor Research Report No. 26-98 (Rutgers Univ., Rutcor, 1998).Google Scholar
  6. 6.
    S. V. Jablonskii, G. P. Gavrilov, and V. B. Kudryavtsev, Functions of the Algebra of Logic and the Post Classes (Nauka, Moscow, 1966) [in Russian].Google Scholar
  7. 7.
    J. Kuntzman, Algébre de Boole (Dunod, Paris, 1965).Google Scholar
  8. 8.
    S. S. Marchenkov, Closed Classes of Boolean Functions (Fizmatlit, Moscow, 2000) [in Russian].MATHGoogle Scholar
  9. 9.
    S. S. Marchenkov, “Finite Generability of Closed Classes of Boolean Functions,” Diskret. Anal. Issled. Oper. Ser. 1, 12(1), 101–118 (2005).MATHMathSciNetGoogle Scholar
  10. 10.
    S. S. Marchenkov, “Equational Closure,” Diskret. Mat. 17(2), 117–126 (2005) [Discrete Math. Appl. 15 (3), 289–298 (2005)].MathSciNetGoogle Scholar
  11. 11.
    N. Pippenger, “Galois Theory for Minors of Finite Functions,” Discrete Math. 254, 405–419 (2002).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. B. Ugol’nikov, “Closed Post Classes,” Izv. Vyssh. Uchebn. Zaved. Mat. 7, 79–88 (1988) [Soviet Math. (Izv. VUZ) 32 (7), 131–142 (1988)].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Department of Mathematical CyberneticsMoscow State UniversityVorob’ovy gory, MoscowRussia

Personalised recommendations