Advertisement

On shifting sets in the binary hypercube

  • Yu. L. Vasil’ev
  • S. V. Avgustinovich
  • D. S. Krotov
Article
  • 25 Downloads

Abstract

If two codes with distance 3 have some coincident neighborhoods then each of them is called a shifting set. In the binary (4k + 3)-dimensional hypercube, there exists a shifting set of power 2 · 6 k which can be neither divided into shifting sets of less size nor represented as a natural dilatation of a shifting set of less size.

Keywords

Full Rank Parity Check Code Dimension Standard Vector Problem Inform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. L. Vasil’ev and F. I. Solov’eva, “Code-Generating Factorization of an n-Dimensional Cube and Perfect Binary Codes,” Problemy Peredachi Informatsii 33(1), 64–74 (1997) [Problems Inform. Transmission 33 (1), 53–61 (1997)].MathSciNetGoogle Scholar
  2. 2.
    V. A. Zinoviev and D. V. Zinoviev, “Binary Extended Perfect Codes of Length 16 and Rank 14,” Problemy Peredachi Informatsii 42(2), 63–80 (2006) [Problems Inform. Transmission 42 (2), 123–138 (2006)].MathSciNetGoogle Scholar
  3. 3.
    V.A. Zinoviev and A. C. Lobstein, “On Generalized Concatenated Constructions of Perfect Bynary Nonlinear Codes,” Problemy Peredachi Informatsii 36(4), 59–73 (2000) [Problems Inform. Transmission 36 (4), 336–348 (2000)].MathSciNetGoogle Scholar
  4. 4.
    S. A. Malyugin, “On Enumeration of Nonequivalent Perfect Binary Codes of Length 15 and Rank 15,” Discret. Anal. Issled. Oper. Ser. 1, 13(1), 77–98 (2006) [J. Appl. Indust. Math. 1 (1), 77–89 (2007)].MathSciNetGoogle Scholar
  5. 5.
    V. N. Potapov, “A Lower Bound for the Number of Transitive Perfect Codes,” Discret. Anal. Issled. Oper. Ser. 1, 13(4), 49–59 (2006) [J. Appl. Industr. Math. 1 (3), 373–379 (2007)].Google Scholar
  6. 6.
    F. I. Solov’eva, “On Factorization of Code-Generating D.N.F.,” in Methods of Discrete Analysis, Vol. 47 (Sobolev Inst. Math., Novosibirsk, 1988), pp. 66–88.Google Scholar
  7. 7.
    F. I. Solov’eva, “On the Construction of Transitive Codes,” Problemy Peredachi Informatsii 41(3), 23–31 (2005) [Problems Inform. Transmission 41 (3), 204–211 (2005)].MathSciNetGoogle Scholar
  8. 8.
    D. G. Fon-Der-Flaas, “Perfect 2-Colorings of a Hypercube,” Sibirsk. Mat. Zh. 48(4), 923–930 (2007) [Siberian Math. J. 48 (4), 740–745 (2007)].MathSciNetGoogle Scholar
  9. 9.
    F. I. Solov’eva, “Structure of i-Components of Perfect Binary Codes,” Discrete Appl. Math. 111(1–2), 189–197 (2001). Look at http://dx.doi.org/10.1016/S0166-218X(00)00352-8 DOI: 10.1016/S0166-218X(00)00352-8.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Yu. Vasil’eva, “A Representation of Perfect Binary Codes,” in Proceedings of the Seventh International Workshop on Algebraic and Combinatorial Coding Theory (Bansko, Bulgaria, 2000), pp. 311–315.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. L. Vasil’ev
    • 1
  • S. V. Avgustinovich
    • 1
  • D. S. Krotov
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations