Journal of Applied and Industrial Mathematics

, Volume 2, Issue 4, pp 591–604 | Cite as

Some estimates for the number of vertices of integer polyhedra

Article

Abstract

A polyhedron is called integer if its every vertex has integer coordinates. We consider integer polyhedra P I = conv(P ∩ ℤ d ) defined implicitly; that is, no system of linear inequalities is known for P I but some is known for P. Some estimates are given for the number of vertices of P I .

Keywords

Industrial Mathematic Convex Hull Extreme Point Integer Program Knapsack Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Broensted, An Introduction to Convex Polytopes (Springer, Heidelberg, 1983; Mir, Moscow, 1988).Google Scholar
  2. 2.
    S. I. Veselov, A Lower Estimate of the Average Number of Irreducible and Extreme Points in Two Problems of Discrete Programming, Available from VINITI, No. 619-T84 (Gor’kii State Univ., Moscow, 1984).Google Scholar
  3. 3.
    S. I. Veselov, Determination of the Convex Hull of the Integer Points of a Polyhedron on the Plane, Available from VINITI, No. 8624-T88 (Gor’kii State Univ., Moscow, 1988).Google Scholar
  4. 4.
    S. I. Veselov and V. N. Shevchenko, On the Number of Extreme Points of a Square System of Linear Inequalities, Available from VINITI, No. 450-T79 (Gor’kii State Univ., Moscow, 1979).Google Scholar
  5. 5.
    S. I. Veselov and V. N. Shevchenko, “Estimates of the Minimal Distance between the Points of Some Integer Lattices,” in Combinatorial and Algebraic Methods in Applied Mathematics (Gor’kii State Univ., Gor’kii, 1980), pp. 26–33.Google Scholar
  6. 6.
    I.M. Vinogradov, Foundations of Number Theory (Nauka, Moscow, 1972) [in Russian].Google Scholar
  7. 7.
    V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polyhedra, Graphs, and Optimization (Nauka, Moscow, 1981) [in Russian].Google Scholar
  8. 8.
    F. Klein, Elementarmathematik vom hoheren Standpunkte aus, Erster Band: Arithmetic, Algebra, Analysis (Verlag von Julius Springer, Berlin, 1933; Nauka,Moscow, 1987).Google Scholar
  9. 9.
    F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction (Springer, New York, 1985).Google Scholar
  10. 10.
    A. Schrijver, Theory of Linear and Integer Programming, Vol. 2 (Wiley, New York, 1986).Google Scholar
  11. 11.
    T. Hu, Integer Programming and Network Flows (Addison-Wesley, Reading, Mass., 1969).MATHGoogle Scholar
  12. 12.
    A. Yu. Chirkov, “On the Number of Extreme Points in the Integer Linear Programming Problem,” in Combinatorial and AlgebraicMethods in Discrete Optimization (Nizhnii Novgorod State Univ., Nizhnii Novgorod, 1991), pp. 157–159.Google Scholar
  13. 13.
    A. Yu. Chirkov, The Caratheodory Theorem and Simplicial Covering of a Polygon, Available from VINITI, No. 668-T93 (Nizhnii Novgorod State Univ., Moscow, 1993).Google Scholar
  14. 14.
    A. Yu. Chirkov, “Lower Estimate of the Number of Vertices of the Convex Hull for Integral and Partially Integral Points of a Polyhedron,” Diskret. Anal. Issled. Oper. 3(2), 80–89 (1996).MATHMathSciNetGoogle Scholar
  15. 15.
    A. Yu. Chirkov, “On the Connection between the Number of Vertices of the Convex Hull of the Integer Points of a Polyhedron with Its Metrical Characteristics,” in Proceedings of the Second International Conference “Mathematical Algorithms” (Nizhnii Novgorod State Univ., Nizhnii Novgorod, 1997), pp. 169–174.Google Scholar
  16. 16.
    A. Yu. Chirkov and V. N. Shevchenko, On the Number of Vertices of the Convex Hull of the Intersection of a Polyhedron with the Integer Lattice, Available from VINITI, No. 2165-T93 (Nizhnii Novgorod State Univ., Moscow, 1993).Google Scholar
  17. 17.
    V. N. Shevchenko, “On the Number of Extreme Points in Integer Programming,” Kibernetika, No. 2, 133–134 (1981).Google Scholar
  18. 18.
    V. N. Shevchenko, “Algebraic Approach in Integer Programming,” Kibernetika, No. 4, 36–41 (1984) [Cybernetics 20, 508–515 (1984)].Google Scholar
  19. 19.
    V. N. Shevchenko, “Upper Estimates for the Number of Extreme Points in Integer Programming,” Mat. Voprosy Kibernet. 4, 65–72 (1992).MATHMathSciNetGoogle Scholar
  20. 20.
    V. N. Shevchenko, Qualitative Questions in Integer Programming (Fizmatlit, Moscow, 1995) [in Russian].Google Scholar
  21. 21.
    I. Barany, R. Howe, and L. Lovasz, “On Integer Points in Polyhedra: a Lower Bound,” Combinatorica 12(2), 135–142 (1992).MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    W. Cook, A. M. H. Gerards, A. Schrijver, and E. Tardos, “Sensitivity Theorems in Integer Linear Programming,” Math. Programming 34(3), 251–264 (1986).MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    W. Cook, M. Hartmann, R. Kannan, and C. McDiarmid, “On Integer Points in Polyhedra,” Combinatorica 12(1), 27–37 (1992).MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    A. C. Hayes and D. C. Larman, “The Vertices of the Knapsack Polytope,” Discrete Appl. Math. 6(2), 135–138 (1983).MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    D. A. Morgan, “Upper and Lower Bound Results on the Convex Hull of Integer Points in Polyhedra,” Mathematika 38(2), 321–328 (1991).MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    D. S. Rubin, “On the Unlimited Number of Faces in Integer Hulls of Linear Programs with a Single Constraint,” Oper. Res. 18(5), 940–945 (1970).MATHCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Department of Computational Mathematics and CyberneticsState University of Nizhnii NovgorodNizhnii NovgorodRussia

Personalised recommendations