Journal of Applied and Industrial Mathematics

, Volume 2, Issue 4, pp 484–500 | Cite as

Crystallographic classes on the minkowski space R 1,2. I. Theorems

Article
  • 21 Downloads

Abstract

Some preliminary statements are proved necessary for calculating the crystallographic groups in six crystallographic classes in the 3-dimensional Minkowski space. Three classes are determined by the unimodular subgroups of the general Lorentz group and three more classes, by subgroups unimodular in a certain isotropic coordinate system.

Keywords

Minkowski Space Quotient Group Rotation Group Integer Matrix Crystallographic Group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Garipov, “Crystallographic Groups in Minkowski Space-Time,” in Lavrent’ev Readings on Mathematics, Mechanics and Physics: Abstracts (Lavrent’ev Inst. Hydrodynamics, Novosibirsk, 2005), pp. 34–35.Google Scholar
  2. 2.
    R. M. Garipov, “Crystallographic Classes in Minkowski Space R 1,2,” Dokl. Akad. Nauk., Ross. Akad. Nauk 409(3), 300–304 (2006) [Dokl. Math. 74 (1), 517–520 (2006)].MathSciNetGoogle Scholar
  3. 3.
    R. M. Garipov, “Ornament Groups on the Minkowski Plane,” Algebra Logika 42(6), 655–682 (2003) [Algebra Logic 42 (6), 365–381 (2003)].MATHMathSciNetGoogle Scholar
  4. 4.
    R. M. Garipov, “Classification of Crystallographic Groups on a Pseudo-Euclidean Plane up to Isomorphism. I: General Case,” Sibirsk. Zh. Industr. Mat. 6(4), 11–31 (2003).MATHMathSciNetGoogle Scholar
  5. 5.
    R. M. Garipov, “Classification of Crystallographic Groups on a Pseudo-Euclidean Plane up to Isomorphism. III: Lattices *. Series VII and VIII,” Sibirsk. Zh. Industr. Mat. 7(1), 21–38 (2004).MATHMathSciNetGoogle Scholar
  6. 6.
    R. M. Garipov, “Classification of Crystallographic Groups on a Pseudo-Euclidean Plane up to Isomorphism. III: Lattices *. Series IX and X,” Sibirsk. Zh. Industr. Mat. 7(2), 23–39 (2004).MATHMathSciNetGoogle Scholar
  7. 7.
    D. Fried and W. M. Goldman, “Three-Dimensional Affine Crystallographic Groups,” Adv. Math. 47(1), 1–49 (1983).MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    E. B. Vinberg, “On Groups of Unit Elements of Certain Quadratic Forms,” Mat. Sb. (N.S.) 87(1), 18–36 (1972) [Math. USSR, Sb. 16, 17–35 (1972)].MathSciNetGoogle Scholar
  9. 9.
    E. B. Vinberg, “The Nonexistence of Crystallographic Groups of Reflections in Lobachevskij Spaces of Large Dimension,” Trudy Moskov. Mat. Obshch. 47, 68–102 (1984) [Trans. Mosc. Math. Soc. 1985, 75–112 (1985)].MathSciNetGoogle Scholar
  10. 10.
    V. O. Bugaenko, “Arithmetic Crystallographic Groups Generated by Reflections, and Reflective Hyperbolic Lattices,” Adv. Soviet Math. 8, 33–55 (1992).MathSciNetGoogle Scholar
  11. 11.
    M. A. Neimark, Linear Representation of the Lawrence Group (Fizmatgiz, Moscow, 1958) [in Russian].Google Scholar
  12. 12.
    F. R. Gantmakher, The Theory of Matrices (Nauka, Moscow, 1967) [in Russian].Google Scholar
  13. 13.
    H. Zassenhaus, “Über einen Algoritmus zur Bestimmung der Raumgruppen,” Comment. Math. Helv. 21, 117–141 (1948).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    R. M. Garipov, “An Algebraic Method for Calculating Crystallographic Groups. II,” Sibirsk. Zh. Industr. Mat. 4(1), 52–72 (2001).MATHMathSciNetGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Lavrent’ev Institute of HydrodynamicsNovosibirskRussia

Personalised recommendations