Advertisement

Survey of the methods for constructing nonlinear perfect binary codes

  • A. M. Romanov
Article

Abstract

The theory of perfect codes is an area at the juncture of coding theory and design theory which is rather hard to explore. Linear perfect codes were constructed by M. Golay and R. Hamming in the end of the 1940s. Nonlinear perfect codes were discovered by Yu. L. Vasil’ev in 1961. At present, many different methods are known for constructing perfect codes. This article presents a survey of the methods for constructing nonlinear perfect binary codes alongside some open questions of the theory of perfect codes.

Keywords

Switching Class Parity Check Matrix Steiner Triple System Perfect Code Regular Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. V. Avgustinovich and F. I. Solov’eva, “On Nonsystematic Perfect Binary Codes,” Problemy Peredachi Informatsii 32(3), 47–50 (1996) [Problems Inform. Transm. 32 (3), 258–261 (1996)].MathSciNetGoogle Scholar
  2. 2.
    S. V. Avgustinovich and F. I. Solov’eva, “Construction of Perfect Binary Codes by Sequential Shifts of \( \tilde \alpha \) -Components,” Problemy Peredachi Informatsii 33(3), 15–21 (1997) [Problems Inform. Transm. 33 (3), 202–207 (1997)].MathSciNetGoogle Scholar
  3. 3.
    S. V. Avgustinovich, O. Heden, and F. I. Solov’eva, “Full Rank Perfect Codes with Kernels of Great Dimension,” Diskret. Anal. Issled. Oper., Ser. 1, 8(4), 3–8 (2001).MathSciNetMATHGoogle Scholar
  4. 4.
    S. V. Avgustinovich, F. I. Solov’eva, and O. Heden, “On the Ranks and Kernels Problem for Perfect Codes,” Problemy Peredachi Informatsii 39(4), 30–34 (2003) [Problems Inform. Transm. 39 (4), 341–345 (2003)].MathSciNetGoogle Scholar
  5. 5.
    Yu. L. Vasil’ev, “On Nongroup Close-Packed Codes,” Problemy Kibernet., No. 8, 337–339 (Fizmatgiz, Moscow, 1962).Google Scholar
  6. 6.
    Yu. L. Vasil’ev, “On Complexity Comparison of Irredundant and Minimal Disjunctive Normal Forms,” Problemy Kibernet., No. 10, 5–61 (Fizmatgiz, Moscow, 1963).Google Scholar
  7. 7.
    Yu. L. Vasil’ev and F. I. Solov’eva, “Code-Generating Factorizations of an n-Dimensional Unit Cube and of Perfect Binary Codes,” Problemy Peredachi Informatsii 33(1), 64–74 (1997) [Problems Inform. Transm. 33 (1), 53–61 (1997)].MathSciNetGoogle Scholar
  8. 8.
    V. A. Zinov’ev, “Codes the for Correlated Multiaddress Selection,” Candidate’s Dissertation in Technical Sciences (Moscow, 1970).Google Scholar
  9. 9.
    V. A. Zinov’ev, “Generalized Concatenated Codes,” Problemy Peredachi Informatsii 12(1), 5–15 (1976).MathSciNetMATHGoogle Scholar
  10. 10.
    V. A. Zinov’ev, “Combinatorical Methods for Construction and Analysis of Nonlinear Correcting Codes,” Doctoral Dissertation in Mathematics and Physics (Moscow, 1988).Google Scholar
  11. 11.
    V. A. Zinov’ev and D. V. Zinov’ev, “Binary Extended Perfect Codes of Length 16 by the Generalized Concatenated Construction,” Problemy Peredachi Informatsii 38(4), 56–84 (2002) [Problems Inform. Transm. 38 (4), 296–322 (2002)].MathSciNetGoogle Scholar
  12. 12.
    V. A. Zinov’ev and D. V. Zinov’ev, “Binary Perfect Codes of Length 15 by the Generalized Concatenated Construction,” Problemy Peredachi Informatsii 40(1), 27–39 (2004) [Problems Inform. Transm. 40 (1), 25–36 (2004)].MathSciNetGoogle Scholar
  13. 13.
    V. A. Zinov’ev and D. V. Zinov’ev, “Binary Extended Perfect Codes of Length 16 and Rank 14,” Problemy Peredachi Informatsii 42(2), 63–80 (2006).MathSciNetGoogle Scholar
  14. 14.
    V. A. Zinov’ev and V. K. Leont’ev, “Nonexistence of Perfect Codes over Galois Fields,” Problemy Peredachi Informatsii 2(2), 123–132 (1973) [Probl. Control Inform. Theory, Suppl., 16–24 (1973)].MathSciNetGoogle Scholar
  15. 15.
    V. A. Zinov’ev and A. S. Lobstein, “On Generalized Concatenated Constructions of Perfect Binary Nonlinear Codes,” Problemy Peredachi Informatsii 36(4), 59–73 (2000) [Problems Inform. Transm. 36 (4), 336–348 (2000)].MathSciNetGoogle Scholar
  16. 16.
    D. S. Krotov, “Lower Bounds on the Number of m-Quasigroups of Order 4 and the Number of Perfect Binary Codes,” Diskret. Anal. Issled. Oper., Ser. 1, 7(2), 47–53 (2000).MathSciNetMATHGoogle Scholar
  17. 17.
    D. S. Krotov, “Combining Construction of Perfect Binary Codes,” Problemy Peredachi Informatsii 36(4), 74–79 (2000) [Problems Inform. Transm. 36 (4), 349–353 (2000)].MathSciNetGoogle Scholar
  18. 18.
    A. V. Los’, “Construction of Perfect q-ary Codes by Switchings of Simple Components,” Problemy Peredachi Informatsii 42(1), 34–42 (2006) [Problems Inform. Transm. 42 (1), 30–37 (2006)].MathSciNetGoogle Scholar
  19. 19.
    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes (North-Holland, Amsterdam, 1977; Svyaz’, Moscow, 1979).MATHGoogle Scholar
  20. 20.
    S. A. Malyugin, “Nonsystematic Perfect Binary Codes,” Diskret. Anal. Issled. Oper., Ser. 1, 8(1), 55–76 (2001).MathSciNetMATHGoogle Scholar
  21. 21.
    S. A. Malyugin, “On Equivalence Classes of Perfect Binary Codes of Length 15,” Preprint No. 138 (Sobolev Inst. Mat., Novosibirsk, 2004).Google Scholar
  22. 22.
    S. A. Malyugin, “On Enumeration of Nonequivalent Perfect Binary Codes of Length 15 and Rank 15,” Diskret. Anal. Issled. Oper., Ser. 1, 13(1), 77–98 (2006) [J. Appl. Industr. Math. 1 (1), 77–89 (2007)].MathSciNetGoogle Scholar
  23. 23.
    S. A. Malyugin and A. M. Romanov, “On Partitions of the Hamming Code into Disjoint Components,” Diskret. Anal. Issled. Oper., Ser. 1, 9(1), 42–48 (2002).MathSciNetMATHGoogle Scholar
  24. 24.
    A. M. Romanov, “On Construction of Nonlinear Perfect Binary Codes by Inversion of Symbols,” Diskret. Anal. Issled. Oper., Ser. 1, 4(1), 46–52 (1997).MathSciNetMATHGoogle Scholar
  25. 25.
    A. M. Romanov, “On Nonsystematic Perfect Codes of Length 15,” Diskret. Anal. Issled. Oper., Ser. 1, 4(4), 75–78 (1997).MathSciNetMATHGoogle Scholar
  26. 26.
    A. M. Romanov, “Perfect Binary Codes with Trivial Kernel,” Diskret. Anal. Issled. Oper., Ser. 1, 7(2), 71–74 (2000).MathSciNetMATHGoogle Scholar
  27. 27.
    A. M. Romanov, “On Partitions of q-ary Hamming Codes into Disjoint Components,” Diskret. Anal. Issled. Oper., Ser. 1, 11(3), 80–87 (2004).MathSciNetMATHGoogle Scholar
  28. 28.
    F. I. Solov’eva, “On binary Nongroup Codes,” in Proceedings of the Institute of Mathematics, Vol. 37: Methods of Discrete Analysis for Studying the Boolean Functions and Graphs (Inst. Mat., Novosibirsk, 1981), pp. 65–76.Google Scholar
  29. 29.
    F. I. Solov’eva, “Exact Bounds of the Connectivity of Code-Generating Disjunctive Normal Forms,” Preprint No. 10 (Inst. Mat., Novosibirsk, 1990).Google Scholar
  30. 30.
    G. D. Forney, Concatenated Codes (ScD Thesis, MIT, Cambridge, 1965; Mir, Moscow, 1970).Google Scholar
  31. 31.
    S. V. Avgustinovich, O. Heden, and F. I. Solov’eva, “The Classification of Some Perfect Codes,” Designs, Codes and Cryptog. 31(3), 313–318 (2004).CrossRefMathSciNetMATHGoogle Scholar
  32. 32.
    S. V. Avgustinovich, A. Lobstein, and F. I. Solov’eva, “Intersection Matrices for Partitions by Binary Perfect Codes,” IEEE Trans. Inform. Theory 47(4), 1621–1624 (2001).CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    H. Bauer, B. Ganter, and F. Hergert, “Algebraic Techniques for Nonlinear Codes,” Combinatorica 3(1), 21–33 (1983).CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes (Elsevier, North Holland, 1998).Google Scholar
  35. 35.
    G. Cohen, S. Litsyn, A. Vardy, and G. Zemor, “Tilings of Binary Spaces,” SIAM J. Discrete Math. 9(3), 393–412 (1996).CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    P. Delsarte and J. M. Goethals, “Unrestricted Codes with the Golay Parameters Are Unique,” Discrete Math. 12(3), 211–224 (1975).CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    P. B. Gibbons, “Computing Techniques for the Construction and Analysis of Block Designs,” PhD Thesis (Dep. Comput. Sci., Univ. Toronto, Toronto, 1976).Google Scholar
  38. 38.
    R. W. Hamming, “Error Detecting and Error Correcting Codes,” Bell System Tech. J. 29(2), 147–160 (1950).MathSciNetGoogle Scholar
  39. 39.
    O. Heden, “A New Construction of Group and Nongroup Perfect Codes,” Inform. and Control 34(4), 314–323 (1977).CrossRefMathSciNetMATHGoogle Scholar
  40. 40.
    O. Heden, “A Binary Perfect Code of Length 15 and Codimension 0,” Designs, Codes and Cryptog. 4(3), 213–220 (1994).CrossRefMathSciNetMATHGoogle Scholar
  41. 41.
    O. Heden, “A Full Rank Perfect Code on Length 31,” Designs, Codes and Cryptog. 38(1), 125–129 (2006).CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    F. Hergert, “The Equivalence Classes of the Vasil’ev Codes of Length 15,” in Lectures Notes in Mathematics, Vol. 969: Combinatorial Theory (Springer, Berlin, 1982), pp. 176–186.Google Scholar
  43. 43.
    T. Etzion and A. Vardy, “Perfect Binary Codes: Constructions, Properties, and Enumeration,” IEEE Trans. Inform. Theory 40(3), 754–763 (1994).CrossRefMathSciNetMATHGoogle Scholar
  44. 44.
    T. Etzion and A. Vardy, “On Perfect Codes and Tilings: Problems and Solution,” SIAM J. Discrete Math. 11(2), 205–253 (1998).CrossRefMathSciNetMATHGoogle Scholar
  45. 45.
    P. Kaski, P. R. J. Östergård, and O. Pottonen, “The Steiner Quadruple Systems of Order 16,” J. Combin. Theory, Ser. A, 113(8), 1764–1770 (2006).CrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    M. Limbos, “Projective Embeddings of Small ’steiner Triple Systems’,” Ann. Discrete Math. 7, 151–173 (1980).MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    A. S. Lobstein and V. A. Zinoviev, “On New Perfect Binary Nonlinear Codes,” Applicable Algebra in Engng. Comm. Comput. 8(5), 415–420 (1997).CrossRefMathSciNetMATHGoogle Scholar
  48. 48.
    M. Mollard, “A Generalized Parity Function and Its Use in Construction of Perfect Codes,” SIAM J. Algebraic Discrete Methods 7(1), 113–115 (1986).CrossRefMathSciNetMATHGoogle Scholar
  49. 49.
    P. R. J. Östergård and O. Pottonen, “There Exist Steiner Triple Systems of Order 15 That Do Not Occur in a Perfect Binary One-Error-Correcting Code,” J. Combin. Designs 15, 465–468 (2007).CrossRefMATHGoogle Scholar
  50. 50.
    P. R. J. Östergård and A. Vardy, “Resolving the Existence of Full-Rank Tilings of Binary Hamming Spases,” SIAM J. Discrete Math. 18(2), 382–387 (2004).CrossRefMathSciNetMATHGoogle Scholar
  51. 51.
    K. T. Phelps, “A Combinatorial Construction of Perfect Codes,” SIAM J. Algebraic Discrete Methods 4(3), 398–403 (1983).CrossRefMathSciNetMATHGoogle Scholar
  52. 52.
    K. T. Phelps, “A General Product Construction for Error Correcting Codes,” SIAM J. Algebraic Discrete Methods 5(2), 224–228 (1984).CrossRefMathSciNetMATHGoogle Scholar
  53. 53.
    K. T. Phelps, “An Enumeration of 1-Perfect Binary Codes,” Austral. J. Combin. 21, 287–298 (2000).MathSciNetMATHGoogle Scholar
  54. 54.
    K. T. Phelps, “Combinatorial Designs and Perfect Codes,” Electron. Notes Discrete Math. 10, 15 (2001).MathSciNetGoogle Scholar
  55. 55.
    K. T. Phelps and M. LeVan, “Kernels of Nonlinear Hamming Codes,” Designs, Codes and Cryptogr. 6(3), 247–257 (1995).CrossRefMathSciNetMATHGoogle Scholar
  56. 56.
    K. T. Phelps and M. LeVan, “Nonsystematic Perfect Codes,” SIAM J. Discrete Math. 12(1), 27–34 (1999).CrossRefMathSciNetMATHGoogle Scholar
  57. 57.
    K. T. Phelps and M. LeVan, “Switching Equivalence Classes of Perfect Codes,” Designs, Codes and Cryptogr. 16(2), 179–184 (1999).CrossRefMathSciNetMATHGoogle Scholar
  58. 58.
    K. T. Phelps, J. Rifà, and M. Villanueva, “Kernels and p-Kernels of p r-ary 1-Perfect Codes,” Designs, Codes and Cryptogr. 37(2), 243–261 (2005).CrossRefMathSciNetMATHGoogle Scholar
  59. 59.
    K. T. Phelps and M. Villanueva, “Ranks of q-ary 1-Perfect Codes,” Designs, Codes and Cryptogr. 27(1–2), 139–144 (2002).CrossRefMathSciNetMATHGoogle Scholar
  60. 60.
    K. T. Phelps and M. Villanueva, “On Perfect Codes: Rank and Kernel,” Designs, Codes and Cryptogr. 27(3), 183–194 (2002).CrossRefMathSciNetMATHGoogle Scholar
  61. 61.
    V. Pless, “On the Uniqueness of the Golay Codes,” J. Combin. Theory 5(3), 215–228 (1968).CrossRefMathSciNetMATHGoogle Scholar
  62. 62.
    J. Rifà, “Well-Ordered Steiner Triple Systems and 1-Perfect Partitions of the n-Cube,” SIAM J. Discrete Math. 12(1), 35–47 (1999).CrossRefMathSciNetMATHGoogle Scholar
  63. 63.
    J. Rifà and A. Vardy, “On Partitions of Space Into Perfect Codes,” in III French-Israeli Workshop on Coding Theory and Information Integrity (Ein Boqeq, Dead Sea, Israel, 1997).Google Scholar
  64. 64.
    J. Schönheim, “On Linear and Nonlinear Single-Error-Correcting q-ary Perfect Codes,” Inform. and Control 12(1), 23–26 (1968).CrossRefMATHGoogle Scholar
  65. 65.
    F. I. Solov’eva, “Structure of i-Components of Perfect Binary Codes,” Discrete Appl. Math. 111(1–2), 189–197 (2001).CrossRefMathSciNetMATHGoogle Scholar
  66. 66.
    F. I. Solov’eva, “On Perfect Codes and Related Topics,” in Lecture Notes Ser., Vol. 13 (Pohang Univ. of Science and Technology, Pohang, Korea, 2004), p. 80.Google Scholar
  67. 67.
    A. Tietäväinen, “On the Nonexistence of Perfect Codes Over Finite Fields,” SIAM J. Appl. Math. 24(1), 88–96 (1973).CrossRefMathSciNetMATHGoogle Scholar
  68. 68.
    J. H. van Lint, Introduction to Coding Theory (Springer, New York, 1982).MATHGoogle Scholar
  69. 69.
    H. S. White, F. N. Cole, and L. D. Cummings, “Complete Classification of Triad Systems on Fifteen Elements,” Mem. Nat. Acad. Sci. USA 14, 1–89 (1919).Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations