Astrophysical Bulletin

, Volume 71, Issue 4, pp 371–383 | Cite as

A comparison of anisotropic statistical properties of CMB maps based on the WMAP and planck space mission data

Article
  • 40 Downloads

Abstract

We compare the anisotropic properties of the cosmic microwave background (CMB) maps constructed based on the data of NASA’s WMAP (9th year of observations) and ESA’s Planck (2015 release) space missions. In our analysis, we use two two-dimensional estimators of the scatter of the signal on a sphere, which amount to algorithms of mapping the ratio of the scatter in the Northern and Southern hemispheres depending on the method of dividing (specifically, rotating and cutting) the sky into hemispheres. The scatter is computed either as a standard deviation σ, or as the difference between the minimum and maximum values on a given hemisphere. Applying both estimators to the CMB anisotropy datameasured by two spacemissions, Planck and WMAP, we compared the variations of the background at different angular scales.Maps with a resolution of l ≤ 100 show that the division into regions with different levels of statistical anisotropy lies close to the ecliptic plane, and after preliminary removal of the l ≤ 20 harmonics from the CMB data, the anisotropic signal related to the Galaxy begins to dominate.

Keywords

cosmic microwave background radiation—methods data analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, A1 (2014).CrossRefGoogle Scholar
  2. 2.
    R. Adam et al. (Planck Collab.), arXiv:1502.01582.Google Scholar
  3. 3.
    P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, A23 (2014).CrossRefGoogle Scholar
  4. 4.
    C. J. Copi, D. Huterer, D. J. Schwarz, and G. D. Starkman, Monthly Notices Royal Astron. Soc. 449, 3458 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    L. Santos, P. Cabella, T. Villela, et al., Astron. and Astrophys. 569, A75 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    H. K. Eriksen, F. K. Hansen, A. J. Banday, et al., Astrophys. J. 605, 14 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    A. Mariano and L. Perivolaropoulos, Phys. Rev.D 87, 043511 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    M. Tegmark, A. de Oliveira-Costa, and A. Hamilton, Phys. Rev. D 68, 123523 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    K. Land and J. Magueijo, Phys. Rev. Letters 95, 071301 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    M. Cruz, E. Martínez-González, P. Vielva, and L. Cayón, Monthly Notices Royal Astron. Soc. 356, 29 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    M. Cruz, N. Turok, P. Vielva, et al., Science 318, 1612 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    P. D. Naselsky, P. R. Christensen, P. Coles, et al., Astrophysical Bulletin 65, 101 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    J. Kim and P. Naselsky, Astrophys. J. Letters 714, L265 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    M. Hansen, A. M. Frejsel, J. Kim, et al. Phys. Rev. D 83, 103508 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    C. L. Bennett, R. S. Hill, G. Hinshaw, et al., Astrophys. J. Suppl. 192, 17 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    A. Gruppuso and C. Burigana, Journal of Cosmology and Astroparticle Physics 8, 004 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    O. V. Verkhodanov, PhysicsUspekhi 55, 1098 (2012).ADSGoogle Scholar
  18. 18.
    D. S. Gorbunov and V. A. Rubakov, Introduction to the theory of the early universe (Moscow, Krasand, 2010; Singapore, World Scientific, 2011).MATHGoogle Scholar
  19. 19.
    M. Libanov, S. Ramazanov, and V. Rubakov, Journal of Cosmology and Astroparticle Physics 6, 010 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    S. Ramazanov and G. Rubtsov, Phys. Rev. D 89, 043517 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    T. Jaffe, A. J. Banday, H. K. Eriksen, et al., Astrophys. J. Letters 629, L1 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    M. Demiański and A. G. Doroshkevich, Phys. Rev. D 75, 123517 (2007).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Mack, T. Kahniashvili, and A. Kosowsky, Phys. Rev. D 65, 123004 (2002).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    P. D. Naselsky, L.-Y. Chiang, P. Olesen, and O. V. Verkhodanov, Astrophys. J. 615, 45 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    T. Kahniashvili and B. Ratra, Phys. Rev. D 71, 103006 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    M. Libanov, S. Mironov, and V. Rubakov, Phys. Rev. D 84, 083502 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    S. R. Ramazanov and G. I. Rubtsov, Journal of Cosmology and Astroparticle Physics 5, 033 (2012).ADSCrossRefGoogle Scholar
  28. 28.
    H. Liu, A. M. Frejsel, and P. Naselsky, Journal of Cosmology and Astroparticle Physics 7, 032 (2013).ADSCrossRefGoogle Scholar
  29. 29.
    P. D. Naselsky, A. G. Doroshkevich, and O. V. Verkhodanov, Astrophys. J. Letters 599, L53 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    P. D. Naselsky, A. G. Doroshkevich, and O. V. Verkhodanov, Monthly Notices Royal Astron. Soc. 349, 695 (2004).ADSCrossRefGoogle Scholar
  31. 31.
    L. La Porta, C. Burigana, W. Reich, and P. Reich, Astron. and Astrophys. 479, 641 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    O. V. Verkhodanov and Ya. V. Naiden, Astrophysical Bulletin 67, 1 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    O. V. Verkhodanov, T.V. Keshelava, and Ya. V. Naiden, Astrophysical Bulletin 67, 245 (2012).ADSCrossRefGoogle Scholar
  34. 34.
    M. Hansen, W. Zhao, A. M. Frejsel, et al., Monthly Notices Royal Astron. Soc. 426, 57 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    J. M. Diego, M. Cruz, J. González-Nuevo, et al., Monthly Notices Royal Astron. Soc. 402, 1213 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    V. Dikarev, O. Preuß, S. Solanki, et al., Astrophys. J. 705, 670 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    O. V. Verkhodanov, M. L. Khabibullina, and E.K. Majorova, Astrophysical Bulletin 64, 263 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    O. V. Verkhodanov and M. L. Khabibullina, Astrophysical Bulletin 65, 390 (2010).ADSCrossRefGoogle Scholar
  39. 39.
    V. S. Berkutov, Ya. V. Naiden, and O. V. Verkhodanov, Astrophysical Bulletin 65, 87 (2010).CrossRefGoogle Scholar
  40. 40.
    Ya. V. Naiden and O. V. Verkhodanov, Astrophysical Bulletin 66, 345 (2011).ADSCrossRefGoogle Scholar
  41. 41.
    M. Hansen, J. Kim, A. M. Frejsel, et al., Journal of Cosmology and Astroparticle Physics 10, 059 (2012).ADSCrossRefGoogle Scholar
  42. 42.
    P. D. Naselsky, O. V. Verkhodanov and M. T. B. Nielsen, Astrophysical Bulletin 63, 216 (2008).ADSCrossRefGoogle Scholar
  43. 43.
    P. D. Naselsky and O. V. Verkhodanov, International Journal ofModern Physics D 17, 179 (2008).ADSCrossRefGoogle Scholar
  44. 44.
    P. D. Naselsky and O. V. Verkhodanov, Astrophysical Bulletin 62, 203 (2007).ADSCrossRefGoogle Scholar
  45. 45.
    C. J. Copi, D. Huterer, D. J. Schwarz, and G. D. Starkman, Monthly Notices Royal Astron. Soc. 418, 505 (2011).ADSCrossRefGoogle Scholar
  46. 46.
    A. G. Doroshkevich and O. V. Verkhodanov, Phys. Rev. D 83, 043002 (2011).ADSCrossRefGoogle Scholar
  47. 47.
    Ya. V. Naiden and O. V. Verkhodanov, Astrophysical Bulletin 69, 408 (2014).CrossRefGoogle Scholar
  48. 48.
    A. Kashlinsky, F. Atrio-Barandela, H. Ebeling, et al., Astrophys._J. Letters 712, L81 (2010).ADSCrossRefGoogle Scholar
  49. 49.
    F. Atrio-Barandela, A. Kashlinsky, H. Ebeling, et al., Astrophys. J. 719, 77 (2010).ADSCrossRefGoogle Scholar
  50. 50.
    O. V. Verkhodanov and M. L. Khabibullina, Astrophysical Bulletin 66, 183 (2011).ADSCrossRefGoogle Scholar
  51. 51.
    P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 561, A97 (2014).CrossRefGoogle Scholar
  52. 52.
    O. V. Verkhodanov, Astrophysical Bulletin 69, 350 (2014).ADSGoogle Scholar
  53. 53.
    R. Adam et al. (Planck Collab.), arXiv:1502.05956 (2015).Google Scholar
  54. 54.
    O. V. Verkhodanov, A. G. Doroshkevich, P. D. Naselsky, et al., Bull. Spec. Astrophys. Obs. 58, 40 (2005).ADSGoogle Scholar
  55. 55.
    O. V. Verkhodanov and V. L. Gorokhov, Bull. Spec. Astrophys. Obs. 39, 155 (1995).Google Scholar
  56. 56.
    O. V. Verkhodanov and D. A. Pavlov, Bull. Spec. Astrophys. Obs. 49, 45 (2000).Google Scholar
  57. 57.
    V. S. Shergin, O.V. Verkhodanov, V. N. Chernenkov, et al., ASP Conf. Ser., 125, 182 (1997).ADSGoogle Scholar
  58. 58.
    C. L. Bennett, D. Larson, J. L.Weiland, et al., Astrophys. J. Suppl. 208, 20 (2013).ADSCrossRefGoogle Scholar
  59. 59.
    O. V. Verkhodanov, Ya. V. Naiden, V. N. Chernenkov, and N. V. Verkhodanova, Astrophysical Bulletin 69, 113 (2014).ADSCrossRefGoogle Scholar
  60. 60.
    T. Risbo, J. Geodesy 70, 383 (1996).ADSCrossRefGoogle Scholar
  61. 61.
    D. J. Schwarz, C. J. Copi, D. Huterer, and G. D. Starkman, arXiv:1510.07929 (2015).Google Scholar
  62. 62.
    O. V. Verkhodanov, Physics Uspekhi 59, 3 (2016).ADSCrossRefGoogle Scholar
  63. 63.
    P. A. R. Ade et al. (Planck Collab.), arXiv:1506.07135 (2015).Google Scholar
  64. 64.
    R. Aurich, H. S. Janzer, S. Lustig, and F. Steiner, Classical and Quantum Gravity 25, 125006 (2008).ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    P. Bielewicz and A. Riazuelo, Monthly Notices Royal Astron. Soc. 396, 609 (2009).ADSCrossRefGoogle Scholar
  66. 66.
    A. G. Doroshkevich, P. D. Naselsky, O. V. Verkhodanov, et al., International Journal ofModern Physics D 14, 275 (2005).ADSCrossRefGoogle Scholar
  67. 67.
    A. G. Doroshkevich, O. V. Verkhodanov, P.D.Naselsky, et al., International Journal ofModern Physics D 20, 1053 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Special Astrophysical ObservatoryRussian Academy of SciencesNizhnii ArkhyzRussia

Personalised recommendations