Astrophysical Bulletin

, Volume 71, Issue 1, pp 125–128 | Cite as

Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems

  • V. F. Vdovin
  • V. G. Grachev
  • S. Yu. Dryagin
  • A. I. Eliseev
  • R. K. Kamaletdinov
  • D. V. Korotaev
  • I. V. Lesnov
  • M. A. Mansfeld
  • E. L. Pevzner
  • V. G. Perminov
  • A. M. Pilipenko
  • B. D. Sapozhnikov
  • V. P. Saurin
Article

Abstract

We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including “Radioastron” observatory, which moves in a highly elliptical orbit.

Keywords

instrumentation: detectors space vehicles: instruments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. V. Kalashnikov, A. V. Khudchenko, and V. P. Koshelets, Bull. Rus. Acad. Sci. Physics 77, 28 (2013).CrossRefGoogle Scholar
  2. 2.
    A. A. Andreev, M. L. Zanaveskin, I. O. Mayboroda, et al., J. Radio Electronics, No. 1 (2014); http://jre.cplire.ru/jre/jan14/4/text.htmlGoogle Scholar
  3. 3.
    L. Shen, S. Heikman, B. Moran, et al., Electron Device Lett. 77, 457 (2002).Google Scholar
  4. 4.
    H. Yu, S. Choi, S. Jeon, and M. Kim, Electronics Lett. 50, 377 (2014).CrossRefGoogle Scholar
  5. 5.
    S. P. Watkins, O. J. Pitts, C. Dale, et al., J. Crystal Growth 221, 59 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    V. F. Vdovin, A. I. Eliseev, I. I. Zinchenko, et al., J. Communications Technology and Electronics 50, 1118 (2005).Google Scholar
  7. 7.
    V. F. Vdovin, Radiophysics and Quantum Electronics 48, 779 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    G. Ventura and L. Risegari, The Art of Cryogenics: Low-Temperature Experimental Techniques (Elsevier, Amsterdam, 2008).Google Scholar
  9. 9.
    G. A. Avanesov, B. S. Zhukov, E. B. Krasnopevtseva, and M. M. Zheleznov, Preprint No. 2128 (Space Research Institute, Moscow, 2006).Google Scholar
  10. 10.
    V. S. Avduevskii, E. L. Akim, M. Ya. Marov, et al., Kosmonavtika i Raketostroenie 19, 8 (2000).Google Scholar
  11. 11.
    N. S. Kardashev, Phys. Uspekhi 52, 1127 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    http://rus.postimees.ee/803704/Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. F. Vdovin
    • 1
    • 2
  • V. G. Grachev
    • 3
  • S. Yu. Dryagin
    • 1
  • A. I. Eliseev
    • 1
    • 2
  • R. K. Kamaletdinov
    • 3
  • D. V. Korotaev
    • 1
  • I. V. Lesnov
    • 1
    • 2
  • M. A. Mansfeld
    • 1
  • E. L. Pevzner
    • 1
    • 4
  • V. G. Perminov
    • 1
    • 4
  • A. M. Pilipenko
    • 4
  • B. D. Sapozhnikov
    • 3
  • V. P. Saurin
    • 3
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Nizhny Novgorod State Technical University n.a. R. E. AlekseevNizhny NovgorodRussia
  3. 3.Special Design Bureau Of Moscow Energy InstituteMoscowRussia
  4. 4.Special Design Bureau High-Tech DevelopmentNizhny NovgorodRussia

Personalised recommendations