Skip to main content
Log in

Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including “Radioastron” observatory, which moves in a highly elliptical orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Kalashnikov, A. V. Khudchenko, and V. P. Koshelets, Bull. Rus. Acad. Sci. Physics 77, 28 (2013).

    Article  Google Scholar 

  2. A. A. Andreev, M. L. Zanaveskin, I. O. Mayboroda, et al., J. Radio Electronics, No. 1 (2014); http://jre.cplire.ru/jre/jan14/4/text.html

  3. L. Shen, S. Heikman, B. Moran, et al., Electron Device Lett. 77, 457 (2002).

    Google Scholar 

  4. H. Yu, S. Choi, S. Jeon, and M. Kim, Electronics Lett. 50, 377 (2014).

    Article  Google Scholar 

  5. S. P. Watkins, O. J. Pitts, C. Dale, et al., J. Crystal Growth 221, 59 (2000).

    Article  ADS  Google Scholar 

  6. V. F. Vdovin, A. I. Eliseev, I. I. Zinchenko, et al., J. Communications Technology and Electronics 50, 1118 (2005).

    Google Scholar 

  7. V. F. Vdovin, Radiophysics and Quantum Electronics 48, 779 (2005).

    Article  ADS  Google Scholar 

  8. G. Ventura and L. Risegari, The Art of Cryogenics: Low-Temperature Experimental Techniques (Elsevier, Amsterdam, 2008).

    Google Scholar 

  9. G. A. Avanesov, B. S. Zhukov, E. B. Krasnopevtseva, and M. M. Zheleznov, Preprint No. 2128 (Space Research Institute, Moscow, 2006).

    Google Scholar 

  10. V. S. Avduevskii, E. L. Akim, M. Ya. Marov, et al., Kosmonavtika i Raketostroenie 19, 8 (2000).

    Google Scholar 

  11. N. S. Kardashev, Phys. Uspekhi 52, 1127 (2009).

    Article  ADS  Google Scholar 

  12. http://rus.postimees.ee/803704/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Vdovin.

Additional information

Original Russian Text © V.F. Vdovin, V.G. Grachev, S.Yu. Dryagin, A.I. Eliseev, R.K. Kamaletdinov, D.V. Korotaev, I.V. Lesnov, M.A. Mansfeld, E.L. Pevzner, V.G. Perminov, A.M. Pilipenko, B.D. Sapozhnikov, V.P. Saurin, 2016, published in Astrofizicheskii Byulleten, 2016, Vol. 71, No. 1, pp. 134–138.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vdovin, V.F., Grachev, V.G., Dryagin, S.Y. et al. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems. Astrophys. Bull. 71, 125–128 (2016). https://doi.org/10.1134/S1990341316010132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341316010132

Keywords

Navigation