Astrophysical Bulletin

, Volume 70, Issue 4, pp 474–493 | Cite as

Hydrodynamic model of a self-gravitating optically thick gas and dust cloud

  • E. V. Zhukova
  • A. M. Zankovich
  • I. G. Kovalenko
  • K. M. Firsov


We propose an original mechanism of sustained turbulence generation in gas and dust clouds, the essence of which is the consistent provision of conditions for the emergence and maintenance of convective instability in the cloud. We considered a quasi-stationary one-dimensional model of a selfgravitating flat cloud with stellar radiation sources in its center. The material of the cloud is considered a two-component two-speed continuous medium, the first component of which, gas, is transparent for stellar radiation and is supposed to rest being in hydrostatic equilibrium, and the second one, dust, is optically dense and is swept out by the pressure of stellar radiation to the periphery of the cloud. The dust is specified as a set of spherical grains of a similar size (we made calculations for dust particles with radii of 0.05, 0.1, and 0.15 μm). The processes of scattering and absorption of UV radiation by dust particles followed by IR reradiation, with respect to which the medium is considered to be transparent, are taken into account. Dust-driven stellar wind sweeps gas outwards from the center of the cloud, forming a cocoon-like structure in the gas and dust. For the radiation flux corresponding to a concentration of one star with a luminosity of about 5 ×104 L per square parsec on the plane of sources, sizes of the gas cocoon are equal to 0.2–0.4 pc, and for the dust one they vary from tenths of a parsec to six parsecs. Gas and dust in the center of the cavity are heated to temperatures of about 50–60 K in the model with graphite particles and up to 40 K in the model with silicate dust, while the background equilibrium temperature outside the cavity is set equal to 10 K. The characteristic dust expansion velocity is about 1–7 kms−1. Three structural elements define the hierarchy of scales in the dust cocoon. The sizes of the central rarefied cavity, the dense shell surrounding the cavity, and the thin layer inside the shell in which dust is settling provide the proportions 1 : {1–30} : {10−7–10−6}. The density differentials in the dust cocoon (cavity–shell) are much steeper than in the gas one, dust forms multiple flows in the shell so that the dust caustics in the turning points and in the accumulation layer have infinite dust concentration. We give arguments in favor of unstable character of the inverse gas density distribution in the settled dust flow that can power turbulence constantly sustained in the cloud. If this hypothesis is true, the proposed mechanism can explain turbulence in gas and dust clouds on a scale of parsecs and subparsecs.


interstellar medium: clouds convection instabilities turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.-M. Mac Low and R. S. Klessen, Rev. Modern Physics 76, 125 (2004).CrossRefADSGoogle Scholar
  2. 2.
    B. Elmegreen, Astrophys. J. 577, 206 (2002).CrossRefADSGoogle Scholar
  3. 3.
    E. A. Bergin and M. Tafalla, Annual Rev. Astron. Astrophys. 45, 339 (2007).CrossRefADSGoogle Scholar
  4. 4.
    E. Vazquez-Semadeni, arXiv:1202.4498.Google Scholar
  5. 5.
    A. Burkert, Comptes Rendus Physique 7, 433 (2006).CrossRefADSGoogle Scholar
  6. 6.
    N. Schneider, Ph. André, V. Könyves, et al., Astrophys. J. 766, L17 (2013).CrossRefADSGoogle Scholar
  7. 7.
    A. Brandenburg and A. Nordlund, Reports on Progress in Physics 74, 046901 (2011).CrossRefADSGoogle Scholar
  8. 8.
    N. G. Bochkarev, Foundations of the Physics of the Interstellar Medium (Librokom Publ., Moscow, 2010).Google Scholar
  9. 9.
    E. V. Zhukova, A. M. Zankovich, I. G. Kovalenko, and K. M. Firsov, Vestnik Volgograd. gos. univer., Ser. 1, Matematika, Fizika, No. 1(16), 57 (2012).Google Scholar
  10. 10.
    D. Krüger, A. Gauger, and E. Sedlmayr, Astron. and Astrophys. 290, 573 (1994).ADSGoogle Scholar
  11. 11.
    D. Krüger and E. Sedlmayr, Astron. and Astrophys. 321, 557 (1997).ADSGoogle Scholar
  12. 12.
    N. Mastrodemos, M. Morris, and J. Castor, Astrophys. J. 468, 851 (1996).CrossRefADSGoogle Scholar
  13. 13.
    S. Höfner, M. U. Feuchtinger, and E. A. Dorfi, Astron. and Astrophys. 297, 815 (1995).ADSGoogle Scholar
  14. 14.
    Y. J. W. Simis, V. Icke, and C. Dominik, Astron. and Astrophys. 371, 205 (2001).CrossRefADSGoogle Scholar
  15. 15.
    P. Woitke, Astron. and Astrophys. 452, 537 (2006).CrossRefADSGoogle Scholar
  16. 16.
    W. H. Sorrell, Monthly Notices Royal Astron. Soc. 334, 705 (2002).CrossRefADSGoogle Scholar
  17. 17.
    B. Freytag, F. Allard, H. G. Ludwig, et al., Mem. della Soc. Astron. Italiana 80, 670 (2009).ADSGoogle Scholar
  18. 18.
    B. Freytag, F. Allard, D. Homeier, et al., ASP Conf. Ser., 450, 125 (2011).ADSGoogle Scholar
  19. 19.
    B. B. Ochsendorf, S. Verdolini, N, L. J. Cox, et al., Astron. and Astrophys. 566, A75 (2014).CrossRefADSGoogle Scholar
  20. 20.
    B. B. Ochsendorf, N. L. J. Cox, S. Krijt, et al., Astron. and Astrophys. 563, A65 (2014).CrossRefADSGoogle Scholar
  21. 21.
    N. Murray, E. Quataert, and T. A. Thompson, Astrophys. J. 709, 191 (2010).CrossRefADSGoogle Scholar
  22. 22.
    A. Ferrara, Astrophys. J. 407, 157 (1993).CrossRefADSGoogle Scholar
  23. 23.
    S. Bianchi and A. Ferrara, Monthly Notices Royal Astron. Soc. 358, 379 (2005).CrossRefADSGoogle Scholar
  24. 24.
    G. B. Field, Astrophys. J. 165, 29 (1971).CrossRefADSGoogle Scholar
  25. 25.
    M. R. Krumholz and T. A. Thompson, Astrophys. J. 760, 155 (2012).CrossRefADSGoogle Scholar
  26. 26.
    L. D. Anderson, A. Zavagno, L. Deharveng, et al., Astron. and Astrophys. 542, A10 (2012).CrossRefADSGoogle Scholar
  27. 27.
    V. S. Shevchenko, O. V. Ezhkova, M. A. Ibrahimov, et al., Monthly Notices Royal Astron. Soc. 310, 210 (1999).CrossRefADSGoogle Scholar
  28. 28.
    B. T. Draine and E. E. Salpeter, Astrophys. J. 231, 77 (1979).CrossRefADSGoogle Scholar
  29. 29.
    O. Plekan, A. Cassidy, R. Balog, et al., Physical Chemistry Chemical Physics 13, 21035 (2011).CrossRefGoogle Scholar
  30. 30.
    B. T. Draine, Physics of the Interstellar and Intergalactic Medium (Princeton Univ. Press, Princeton, 2011).Google Scholar
  31. 31.
    E. Krügel, The Physics of Interstellar Dust (IOP Publishing, Bristol and Philadelphia, 2003).Google Scholar
  32. 32.
    H. C. van de Hulst, Light Scattering by Small Particles (Willey & Sons, New York; Chapman & Hall, London; 1957).Google Scholar
  33. 33.
    A. Laor and B. T. Draine, Astrophys. J. 402, 441 (1993).CrossRefADSGoogle Scholar
  34. 34.
    B. P. Briegleb and B. Light, Technical note NCAR/TN-472+STR (National Center for Atmospheric Research, Boulder, CO, 2007).Google Scholar
  35. 35.
    D. Mihalas and B. W. Mihalas, Foundation of Radiation Hydrodynamics (Oxford Univ. Press, New York, 1984).MATHGoogle Scholar
  36. 36.
    L. Pan and P. Padoan, Astrophys. J. 692, 594 (2009).CrossRefADSGoogle Scholar
  37. 37.
    P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 536, A25 (2011).CrossRefGoogle Scholar
  38. 38.
    B. T. Draine, in The Cold Universe, Ed. by A. W. Blain, F. Combes, B. T. Draine, et al. (Springer, 2004), Saas-Fee Advanced Course, Vol. 32, pp. 213–304.CrossRefGoogle Scholar
  39. 39.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley & Sons, New York, 1983).Google Scholar
  40. 40.
    B. Michel, Th. Henning, R. Stognienko, et al., Astrophys. J. 468, 834 (1996).CrossRefADSGoogle Scholar
  41. 41.
    http://wwwastroprincetonedu/~draine//dust/dustdielhtmlGoogle Scholar
  42. 42.
    J. Dorschner, B. Begemann, T. H. Henning, et al., Astron. and Astrophys. 300, 503 (1995).ADSGoogle Scholar
  43. 43.
    R. Siegel and J. R. Howell, Thermal Radiation and Heat Transfer (McGrow Hill Book Company, New York, 1972).Google Scholar
  44. 44.
    J. H. Joseph and W. J.Wicombe. J. Atmospheric Sci. 33, 2452, (1976).CrossRefADSGoogle Scholar
  45. 45.
    W. J. Wicombe, Delta-Eddington Approximation for a Vertically Inhomogeneous Atmosphere (National Center for Atmospheric Research, 1977).Google Scholar
  46. 46.
    J.-L. Tassoul, Theory of Rotating Stars (Princeton Univ. Press, Princeton, 1978).Google Scholar
  47. 47.
    G. Zasowski, S. R. Majewski, R. Indebetouw, et al., Astrophys. J. 707, 510 (2009).CrossRefADSGoogle Scholar
  48. 48.
    G. A. Goncharov, Astronomy Letters 39, 83 (2013).CrossRefADSGoogle Scholar
  49. 49.
    G. A. Goncharov, Astronomy Letters 39, 550 (2013).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Zhukova
    • 1
  • A. M. Zankovich
    • 1
  • I. G. Kovalenko
    • 1
  • K. M. Firsov
    • 1
  1. 1.Institute of Physics and TelecommunicationVolgograd State UniversityVolgogradRussia

Personalised recommendations