Skip to main content
Log in

Structure of galaxy groups and clusters and measurement of their masses

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We report the results of measurement and comparison of masses for a sample of 29 groups and clusters of galaxies (z < 0.1). We use the SDSSDR7 archive data to determine dynamical masses from the one-dimensional dispersion of line-of-sight velocities for virialized regions of radii R 200 and R e. Our method for determination of effective radii of galaxy systems fromthe cumulative distribution of the number of galaxies depending on squared clustercentric distance allowed us to estimate masses M 1/2 (within R e), which are related to the masses contained inside R 200: M 200 ~ 1.65M 1/2. A comparison of the inferred dynamic masses and the hydrostatic masses determined from the radiation of hot gas in galaxy groups and clusters (based on published data) led us to conclude that the inferred masses for the main sample of 21 groups and clusters agree to within 12%. These systems also obey the relation M X,200 ~ 1.65M 1/2. For the remaining eight systems, which are mostly located in the Hercules supercluster, the discrepancy between the hydrostatic and the dynamic masses amounts to 2σ. This discrepancy is most likely due to the incompleteness of the formation processes of these clusters via hierarchical merger in the region of the rich Hercules supercluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Vikhlinin, A. V. Kravtsov, M. L. Markevich, et al., Uspekhi Fiz. Nauk 184, 349 (2014).

    Article  Google Scholar 

  2. M. Girardi, G. Giuricin, F. Mardirossian, et al., Astrophys. J. 505, 74 (1998).

    Article  ADS  Google Scholar 

  3. M. Ramella, W. Boschin, M. Geller, et al., Astron. J. 128, 2022 (2004).

    Article  ADS  Google Scholar 

  4. A. Muzzin, H. K. C. Yee, P. B. Hall, and H. Lin, Astrophys. J. 663, 150 (2007).

    Article  ADS  Google Scholar 

  5. A. J. R. Sanderson, T. J. Ponman, A. Finoguenov, et al., Monthly Notices Royal Astron. Soc. 340, 989 (2003).

    Article  ADS  Google Scholar 

  6. A. Vikhlinin, A. Kravtsov, W. Forman, et al., Astrophys. J. 640, 691 (2006).

    Article  ADS  Google Scholar 

  7. Y. Chen, T. H. Reiprich, H. Bohringer, et al., Astron. and Astrophys. 466, 805 (2007).

    Article  ADS  Google Scholar 

  8. N. Okabe, M. Takada, K. Umetsu, et al., Publ. Astron. Soc. Japan 62, 811 (2010).

    Article  ADS  Google Scholar 

  9. A. Diaferio and M. J. Geller, Astrophys. J. 481, 633 (1997).

    Article  ADS  Google Scholar 

  10. I. D. Karachentsev and O. G. Nasonova, Monthly Notices Royal Astron. Soc. 405, 1075 (2010).

    ADS  Google Scholar 

  11. P. Nurmi, P. Heinamaki, T. Sepp, et al., Monthly Notices Royal Astron. Soc. 436, 380 (2013).

    Article  ADS  Google Scholar 

  12. K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Aqueros, et al., Astrophys. J. Suppl. 182, 543 (2009).

    Article  ADS  Google Scholar 

  13. R. G. Carlberg, H. K. C. Yee, E. Ellingson, et al., Astrophys. J. 485, L13 (1997).

    Article  ADS  Google Scholar 

  14. K. Rines and A. Diaferio, Astron. J. 132, 1275 (2006).

    Article  ADS  Google Scholar 

  15. G. A. Mamon, A. Biviano, and G. Murante, Astron. and Astrophys. 520, A30 (2010).

    Article  ADS  Google Scholar 

  16. A. Biviano, G. Murante, S. Borgani, et al., Astron. and Astrophys. 456, 23 (2006).

    Article  ADS  Google Scholar 

  17. T. H. Reiprich and H. Bohringer, Astrophys. J. 567, 716 (2002).

    Article  ADS  Google Scholar 

  18. H. J. Eckmiller, D. S. Hudson, and T. H. Reiprich, Astron. and Astrophys. 535, A105 (2011).

    Article  ADS  Google Scholar 

  19. M. Sun, G. M. Voit, M. Donahue, et al., Astrophys. J. 693, 1142 (2009).

    Article  ADS  Google Scholar 

  20. A. Finoguenov, T. H. Reiprich, and H. Bohringer, Astron. and Astrophys. 368, 749 (2001).

    Article  ADS  Google Scholar 

  21. R. Piffaretti, Ph. Jetzer, J. S. Kaastra, and T. Tamura, Astron. and Astrophys. 433, 101 (2005).

    Article  ADS  Google Scholar 

  22. F. Gastaldello, D. A. Buote, P. J. Humphrey, et al., Astrophys. J. 669, 158 (2007).

    Article  ADS  Google Scholar 

  23. E. Pointecouteau, M. Arnaud, and G. M. Pratt, Astron. and Astrophys. 435, 1 (2005).

    Article  ADS  Google Scholar 

  24. A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 62, 311 (2007).

    Article  ADS  Google Scholar 

  25. A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 64, 207 (2009).

    Article  ADS  Google Scholar 

  26. A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 65, 205 (2010).

    Article  ADS  Google Scholar 

  27. A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 67, 17 (2012).

    Article  ADS  Google Scholar 

  28. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 64, 1 (2009).

    Article  ADS  Google Scholar 

  29. F. G. Kopylova and A. I. Kopylov, Astronomy Letters 37, 219 (2011).

    Article  ADS  Google Scholar 

  30. F. G. Kopylova and A. I. Kopylov, Astronomy Letters 39, 1 (2013).

    Article  ADS  Google Scholar 

  31. E. J. Tollerud, J. S. Bullock, G. J. Graves, and J. Wolf, Astrophys. J. 726, 108 (2011).

    Article  ADS  Google Scholar 

  32. J. Wolf, G. D. Martinez, J. S. Bullock, et al., Monthly Notices Royal Astron. Soc. 406, 1220 (2010).

    ADS  Google Scholar 

  33. R. Schaffer, S. Maurogordato, A. Cappi, and F. Bernardeau, Monthly Notices Royal Astron. Soc. 263, L21 (1993).

    Article  ADS  Google Scholar 

  34. N. Lyskova, Astronomische Nachrichten 334, 360 (2013).

    Article  ADS  Google Scholar 

  35. N. Lyskova, E. Churazov, A. Moiseev, et al., Monthly Notices Royal Astron. Soc. 441, 2013 (2014).

    Article  ADS  Google Scholar 

  36. T. H. Jarrett, T. Chester, R. Cutri, et al., Astrophys. J. 119, 2498 (2000).

    Google Scholar 

  37. K. Rines, M. J. Geller, A. Diaferio, et al., Astron. J. 128, 1078 (2004).

    Article  ADS  Google Scholar 

  38. Y.-T. Lin, J. J. Mohr, and S. A. Stanford, Astrophys. J. 610, 745 (2004).

    Article  ADS  Google Scholar 

  39. A. Kravtsov, A. Vikhlinin, and A. Meshscheryakov, submitted to Astrophys. J.; arXiv:1401.7329.

  40. S. Andreon, Astron. and Astrophys. 548, A83 (2012).

    Article  ADS  Google Scholar 

  41. M. Einasto, E. Saar, V. J. Maartinez, et al., Astrophys. J. 685, 83 (2008).

    Article  ADS  Google Scholar 

  42. M. Einasto, L. J. Liivamagi, E. Tempel, et al., Astron. and Astrophys. 542, A36 (2012).

    Article  ADS  Google Scholar 

  43. H. Bohringer, U. G. Briel, R. A. Schwartz, et al., Nature 368, 828 (1994).

    Article  ADS  Google Scholar 

  44. A. Mahdavi, A. Finoguenov, H. Bohringer, et al., Astrophys. J. 622, 187 (2005).

    Article  ADS  Google Scholar 

  45. Z. Huang and G. L. Sarazin, Astron. and Astrophys. 461, 622 (1996).

    ADS  Google Scholar 

  46. W. Forman, Chandra proposal ID #03800400 (2001).

    Google Scholar 

  47. K. Nelson, D. H. Rudd, L. Shaw, and D. Nagai, Astrophys. J. 751, 121 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Kopylov or F. G. Kopylova.

Additional information

Original Russian Text © A.I. Kopylov, F.G. Kopylova, 2015, published in Astrofizicheskii Byulleten, 2015, Vol. 70, No. 3, pp. 257–270.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylov, A.I., Kopylova, F.G. Structure of galaxy groups and clusters and measurement of their masses. Astrophys. Bull. 70, 243–256 (2015). https://doi.org/10.1134/S1990341315030013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341315030013

Keywords

Navigation