Astrophysical Bulletin

, Volume 68, Issue 3, pp 273–284 | Cite as

Merger driven explosive evolution of distant galaxies (minor mergers)

  • A. V. Kats
  • V. M. Kontorovich
Article

Abstract

We derived solutions for the Smoluchowski kinetic equation for the mass function of galaxies, which describes mergers in differential approximation, where mergers with low-mass galaxies are the dominant factor. The evolution of the initial distribution is analyzed as well as the influence of the source represented by galaxies (halos) that disengage fromthe global cosmological expansion. It is shown that the evolution of the slope of the power-law portion of the luminosity function at a constant mass-to-luminosity ratio observed in the Ultradeep Hubble Field can be described as a result of explosive evolution driven by galaxy mergers. In this case the exponent depends exclusively on the uniformity degree of merger probability as a function of mass.

Keywords

galaxies interactions-galaxies mass function-galaxies evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Veinberg, Cosmology (Oxford University Press, 2008).Google Scholar
  2. 2.
    D. S. Gorbunov, V. A. Rubakov, Introduction to the Theory of the Early Universe. Cosmological Perturbations and Inflationary Theory (World Scientific, New Jersey, 2011).CrossRefMATHGoogle Scholar
  3. 3.
    V. N. Lukash and E. V. Mikheeva, Fizicheskaya kosmologiya (Physical cosmology) (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  4. 4.
    R. J. Bouwens, G. D. Illingworth, M. Franx, and H. Ford, Astrophys. J. 670, 928 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    R. J. Bouwens, G. D. Illingworth, P. A. Oesch, et al., Astrophys. J. 737, 90 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    A. Kats and V. Kontorovich, Vestn. Kiev. Natsion. Univ., Ser. Astron. 48, 16 (2012).Google Scholar
  7. 7.
    Abstracts of JENAM-2011 (St. Petersburg, 2011), pp. 185–192.Google Scholar
  8. 8.
    V. Kontorovich, Astron. Astrophys. Trans. 5, 259 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    R. C. Kennicutt, P. Schweizer, and J. E. Barnes, Saas-Fee Advance Course 26, 404 (1998).Google Scholar
  10. 10.
    O. K. Sil’chenko, in Astronomiya: traditsii, nastoyashchee, budushchee (Astronomy: traditions, present, and future), Ed. by V. V. Orlov, V. P. Reshetnikov, and N. Ya. Sotnikova (St. Petersburg State University, St. Petersburg, 2007), p. 63.Google Scholar
  11. 11.
    R. Ellis and J. Silk, in Structure formation in Astrophysics, Ed. by G. Chabrier (Cambridge University Press, 2008), p. 133; astro-ph/0712286.Google Scholar
  12. 12.
    J. Silk, G. Mamon, Research in Astron. Astrophys. 12, 917 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Kontorovich, A. V. Kats, and D. S. Krivitskii, JETP Lett. 55, 1 (1992).ADSGoogle Scholar
  14. 14.
    A. Cavaliere, B. Colofrancesco, and N. Menci, Astrophys. J. 376, L37 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    L. D. Landau and E. M. Lifshits, Mechanics, Vol. 1, 3rd ed. (Butterworth-Heinemann, 1976).Google Scholar
  16. 16.
    A. V. Kats and V. M. Kontorovich, in Abstracts of conf. Electromagnetic Methods of Environmental Studies (Kharkov, 2012); http://ri.kharkov.ua//emes/EMES2012-Thesis.pdf.Google Scholar
  17. 17.
    C. Steidel, Proc. of the National Academy of Sciences of the USA 96, 42321 (1999).Google Scholar
  18. 18.
    C. Borys, S. Chapman, M. Donahue, et al., Monthly Notices Roy. Astronom. Soc. 352, 759 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    A. Berciano Alba, L. Koopmans, M. Garrett, et al., Astronom. and Astrophys. 54, A1 (2010).Google Scholar
  20. 20.
    A. V. Kats and V. M. Kontorovich, Vopr. Atomnoy Nauki i Tekhn. (Problems of Atomic Science and Technology) 68, 137 (2010).Google Scholar
  21. 21.
    V. V. Stepanov, Kurs differentsialnykh uravnenii (A course in differential equations) (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1959) [in Russian].Google Scholar
  22. 22.
    V. M. Kontorovich, Radiofiz. Radioastron. 11, 5 (2006).Google Scholar
  23. 23.
    V. Voloshchuk, Kineticheskaya teoriya koagulyatsii (Kinetic theory of coagulation) (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  24. 24.
    M. Ernst, in Proc. of the 6th Trieste International Symposium on Fractals in Physics, Ed. by L. Pietronero and E. Tosatti (North-Holland, Amsterdam, 1986).Google Scholar
  25. 25.
    D. S. Krivitsky and V. M. Kontorovich, Astronom. and Astrophys. 327, 921 (1997).ADSGoogle Scholar
  26. 26.
    G. Mamon, ASP Conf. Ser. 197, 377 (2000).ADSGoogle Scholar
  27. 27.
    C. S. Frenk and S. D. M. White, Annalen der Physik, October 1 (2012); arxiv:1210.0544.Google Scholar
  28. 28.
    S. White, in Proc. of the 36th Herstmonceux Conf. on Gravitational Dynamics, Ed. by O. Lahav, E. Terlevich, and R. Terlevich (Cambridge University Press, Cambridge, New York, 1996); astroph/9602021.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Kats
    • 1
  • V. M. Kontorovich
    • 2
    • 3
  1. 1.Institute of Radio Physics and ElectronicsNational Academy of Sciences of UkraineKharkovUkraine
  2. 2.Institute of Radio AstronomyNational Academy of Sciences of UkraineKharkovUkraine
  3. 3.Kharkov National UniversityKharkovUkraine

Personalised recommendations